
Trends in

Cognitive Sciences
Review
Neural Coding of Cognitive Control: The
Representational Similarity Analysis Approach
Michael C. Freund ,1 Joset A. Etzel ,1 and Todd S. Braver 1,2,3,*
Highlights
Classical measures of cognitive control
often only weakly correspond to the
theoretical representations they are
commonly used to test.

Representational similarity analysis (RSA)
can help better align measures to theory
in this domain.

The power of RSA comes from its
flexibility, yet explicitness, in modeling
representational structure.
Cognitive control relies on distributed and potentially high-dimensional
frontoparietal task representations. Yet, the classical cognitive neuroscience
approach in this domain has focused on aggregating and contrasting neural
measures – either via univariate or multivariate methods – along highly
abstracted, 1D factors (e.g., Stroop congruency). Here, we present representa-
tional similarity analysis (RSA) as a complementary approach that can power-
fully inform representational components of cognitive control theories. We
review several exemplary uses of RSA in this regard. We further show that
most classical paradigms, given their factorial structure, can be optimized for
RSAwith minimal modification. Our aim is to illustrate how RSA can be incorpo-
rated into cognitive control investigations to shed new light on old questions.
Full factorial RSA also enhances inferen-
tial precision and enables interactions to
be tested.

Useful strategies for applying RSA to
inform cognitive control theory are
discussed, and recent studies that ex-
emplify these strategies are reviewed.
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Toward Modeling Cognitive Control Representations
A healthy human mind can set itself towards the pursuit of goals. This capacity for cognitive
control (see Glossary) appears to be a central part of what it means to be human: it putatively
underlies abilities that are most elaborate in our species [1–3], yet that go characteristically awry
within prevalent mental health disorders [1,4–6]. Propelled by this notion, cognitive scientists and
neuroscientists have devoted more than half a century of collective effort toward understanding
how control arises in mind and brain. This understanding has typically been sought through the
lens of two complementary cognitive constructs: representations and processes. A ‘represen-
tation’ is a description of the information that the activity of a neural unit (e.g., neuron, ensemble, or
area) encodes [7,8] (Figure 1, Key Figure: Theory, blue components). Conversely, a ‘process’ is a
description of the function of a neural unit abstracted over particulars of the information encoded [9]
(Figure 1: Theory, orange components). Analogously, a black-box computing function is not
defined by a set of internal state values, but instead by a general input–output mapping. Many
fundamental problems in cognitive control reflect our lack of understanding control representations
[10]. However, studying these representations has been notoriously elusive: classically, their neural
markers have only been indirectly observable, through process-level measures.

In this review, we suggest that progress in understanding the mechanisms of control has arrived
in the form of an expansion in experimental approach: from the classical, which focuses on mea-
suring control processes, to the representational, which explicitly models control representations.
This expansion was precipitated by the development of neural population-level analytic tech-
niques, including multivariate pattern analysis (MVPA) [11–13] and dimensionality reduction
methods [14], which allow neural coding of an unprecedentedly wide range of variables to be
measured at the macroscopic scales of functional neuroimaging. More specifically, we suggest
that the MVPA technique of representational similarity analysis (RSA) [15–17], although it has cur-
rently only been sparsely used within cognitive control research, is particularly well suited for in-
vestigation within this domain. This suitability stems from RSA’s flexibility in implementation
and, as the name suggests, its explicit focus on modeling representations. First, we discuss
how the RSA framework can complement the classical approach. We then illustrate the
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Key Figure

‘Classical’ and Representational Similarity Analysis (RSA) Approaches in
Cognitive Control Research
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Figure 1. Design: a color-word Stroop task with four colors and four words. The participant is instructed to name the stimulus hue
rather than read thewrittenword. Analysis (top): the classical approachbegins by defining abstract factor levels (here, congruent and
incongruent) to which conditions (e.g., stimuli) are assigned. Within these levels, the outcome variables of interest (e.g., response
time) are aggregated (Σ) then contrasted. Measures (top): these unidimensional contrasts are typically interpreted in terms of control
processes (e.g., slower reaction time on incongruent relative to congruent trials indicates heightened control demands). Analysis
(bottom): the RSA approach keeps the task conditions disaggregated (↔↕) to examine the set of pairwise similarities among mea-
sures (e.g., brain activity patterns) from all conditions – that is, their full similarity structure (gray and black lines). This observed sim-
ilarity structure is then compared with structures predicted from theory. For example, a model of target representations would
predict greater similarity between patterns from trials in which the target response was identical (i.e., between stimuli of same
hue: e.g., black line connecting blue-hued ‘BLUE’ and ‘GREEN’ stimuli) versus different (e.g., between stimuli of same word in dif-
ferent hues: black line connecting red-hued andblue-hued ‘BLUE’). Thus, theRSA approach provides indices reflecting the strength
with which multiple different representational schemes were encoded (e.g., the space defined by the light-blue basis vectors, which
correspond to potentially encoded variables). Theory: typically, classical measures support inference (large orange arrow linking
Measure to Theory) regarding control processes (entire CONTROL component of model, orange). Conversely, RSA-based
measures can map more directly (large blue arrow linking Measures to Theory) onto theorized control representations (blue
nodes within CONTROL component).
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Glossary
Artificial neural network (ANN):
computing systems, loosely based on
biological brains (with units analogous to
neurons and weights analogous to
synaptic connections) that are trained to
perform particular tasks via supervised
or reinforcement learning algorithms.
Cognitive control: coordination and
regulation of thoughts and actions in
accordance with internally maintained
behavioral goals.
Condition-rich RSA: experiment
containing diverse and high-dimensional
experimental stimuli, such as naturalistic
images, that permit description by
several different, often continuously
varying, feature spaces (e.g., Gabor
filters or semantic dimensions). A
condition-rich RSA leverages this
stimulus diversity to disentangle models
built on competing feature spaces.
Full factorial RSA: RSA approach that
uses a combination of a full factorial
design (i.e., with multiple fully crossed
factors) and multiple regression to
decompose various coding schemes
and potentially their interactions.
Multivariate pattern analysis
(MVPA): loose category of data
analyses that are sensitive to spatially
distributed (e.g., across-voxel, across-
electrode, or across-neuron) patterns of
brain activity. These include, but are not
limited to, classification-based decoding
and RSA.
Process: account of the function of a
neural or cognitive unit (e.g., neuron,
area, or model component) in terms of
the outcome or impact of the unit on
other systems, or more general contexts
in which it is engaged. Analogous to a
computing function, which is not
described by a set of internal state
values (representations), but an abstract
operation that ‘acts on’ other values.
Representational geometry: term
equivalent to similarity structure, but that
more strongly connotes the geometric or
graphical interpretation (of points as
activity patterns and similarity as
interpoint distances in high-dimensional
activity space), and that emphasizes
connections with neural population
coding frameworks.
Representation: account of the
function of a neural or cognitive unit
(e.g., neuron, area, or model
component) in terms of the content and
format of information that the unit stably
encodes. In the black-box computing
function analogy, a representationwould
usefulness of RSA more concretely, by reviewing several recent RSA studies that addressed
longstanding issues in cognitive control.

The ‘Classical’ Approach Measures Control Processes
Classically, cognitive control investigators have designed and analyzed empirical studies using a
particular style of experimental psychology. Despite salient differences, most prototypical cogni-
tive control tasks (e.g., [18–28]) share a key design element: an abstract experimental factor that
places differential demands on controlled processing. For example, in the color-word Stroop
task, the key factor is congruency: whether the task-relevant dimension (hue) is congruent or
incongruent with a spatially overlapping, but irrelevant dimension (word; Figure 1: Design). These
factors are abstract in the sense that they contain a small number of levels, which collapse across
a diverse set of other task-relevant components (e.g., stimuli, rules, or responsemodalities). During
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be the (hidden) internal values (or states)
of the function.
Similarity structure: given brain
activity patterns evoked by a set of task
conditions, the set of all pairwise
similarities among the conditions. See
also ‘representational geometry’.
Task set: ‘instructions’ for a task,
containing information about stimuli,
responses, and rules (e.g., stimulus–
response mappings), but represented
within a proceduralized, actionable
format.
Univariate activation analysis:
neuroimaging analysis technique
developed to detect spatially uniform
(‘overall’ or mean-level) changes in brain
activity resulting from experimental
manipulations.
analysis, investigators attempt to isolate similarly abstract control processes (e.g., response
conflict resolution) by aggregating and contrasting measures along these factors
(e.g., Figure 1: Analysis, top).

We refer to this style as the ‘classical’ approach to studying cognitive control: through the scalar
lens of process-level contrasts. As a thermometer indicates the temperature, estimates from
these 1D contrasts are assumed to indicate the magnitude or efficiency of the control process
(i.e., ranging from ‘high control’ to ‘low control’). Modulations in these indicators, for example, as
a function of task parameters or individual difference variables, are then used to shed light on
characteristics of the underlying control processes (e.g., boundary conditions [29,30] or relations
with other constructs [31,32]; Figure 1: large orange arrow linking Measures to Theory). The
classical approach is foundational (e.g., [29,30,33]; see also [34]) and has undoubtedly shaped
the kind of information that investigators seek to learn from associated cognitive control paradigms.

With the advent of cognitive neuroscience, control processes have been mapped to the recruit-
ment of particular areas and networks of the brain. To accomplish this, the classical approach
was imported into functional neuroimaging studies, under the predominant framework of univar-
iate activation analysis. This framework was used in a manner directly analogous to previous
process-based behavioral contrasts, only now these contrasts indicated the amount by which
the key control-process manipulation increased aggregate activity within a brain region of
interest. Early neuroimaging studies demonstrated that lateral prefrontal cortex (LPFC),
dorsomedial frontal cortex (DMFC), and other nodes within frontoparietal and cingulo-opercular
brain networks (FPN and CON) reliably ‘activate’ during situations of controlled processing [35],
a result that has been replicated many times over (e.g., [36–39]).

Although the classical approach, and its focus on measuring control processes, serves a neces-
sary, anchoring role, it is nevertheless incomplete. Many cognitive control theories are predomi-
nantly specified, not in terms of processes, but in terms of representations [9] (e.g., abstract
rules [3,40], high-dimensional [41] task conjunctions [42,43], compositional subtasks [44,45], at-
tentional templates [46], hierarchical task schemas [47–49]). In theory, cognitive control represen-
tations, which are encoded and maintained by control brain networks (FPN and CON), contain the
requisite information for performing demanding tasks within an appropriately organized form. Yet,
with only process-level measures at disposal, investigating the form of these representations is
often a challenging endeavor. Possibly, even, the kinds of empirical questions that would be
most clarifying for understanding representational formats associated with cognitive control are
those that process-level measures least naturally support. In particular, what makes two control-
demanding states similar versus distinct?

Representational Approaches Explicitly Model Control Representations
Distinguishing among multiple, equally control-demanding states is exactly the sort of problem
that MVPA methods can make more tractable. These methods can be decomposed
(noncomprehensively) into two variants: classification-based decoding, which we refer to here
as ‘classification’, and RSA (Box 1; see also encoding methods [50]). There has been a growing
body of work using classification within the domain of cognitive control (reviewed in [51]; see also
[45,52,53]). However, in contrast to other domains of cognitive neuroscience, (e.g., object recog-
nition or episodic memory [54–56]), relatively few cognitive control studies have adopted the RSA
approach.

We speculate that classification has been used more frequently out of tradition. Classification
naturally aligns with the classical approach to cognitive control because it is well -suited for binary
624 Trends in Cognitive Sciences, July 2021, Vol. 25, No. 7
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questions – that is, to classify task conditions along a single dimension (e.g., congruency; Box 1).
By contrast, in its original formulation, RSA was developed for the condition-rich naturalistic
experimental designs that are common in visual neuroscience [16,57]. Consequently, control-ori-
ented researchers may have considered RSA to be more of an exploratory tool for studying sen-
sory and perceptual processes, rather than higher cognitive ones. Yet, this would not be
accurate. RSA is a general framework in which the central goal is to adjudicate between several
competing representational models. Two features of RSA make this a straightforward task: the
first is flexibility, due to operating on the similarity structure of activity patterns, or their represen-
tational geometry, rather than on activity patterns per se. The second is explicitness in the goal of
modeling representations, due to a ‘forward’ direction of inference, from model to brain (Box 1).

In fact, the balance of these featuresmakes RSAwell suited for cognitive control research. Seemingly
at odds with the original goal of leveraging the continuously varying feature spaces of naturalistic ex-
periments, RSA can also capitalize on the strengths of factorial designs. These designs are, of course,
the bread-and-butter approach used in cognitive control experiments, as they allow confounds to be
efficiently orthogonalized and interactions studied. Full factorial RSA provides a simple yet powerful
framework for accessing these benefits within analysis of neural representations (Box 2). Indeed,
many extant data sets may be amenable to full factorial RSA (e.g., [58]).

Similarly, cognitive control research can leverage the general inferential strategy of RSA, model
comparison, in a more comprehensive manner than perhaps initially anticipated. In the original
Box 1. Strengths of MVPA Classification and RSA

Consider a hypothetical fMRI study of the color-word Stroop task and a researcher interested in the neural coding of
congruency information. A 1D research question such as this is perhaps most straightforwardly assessed via MVPA
classification: can the congruency level of a trial be classified, or ‘predicted’, by patterns of dorsal anterior cingulate cortex
(dACC) activation (Figure I: Analysis and conclusion)? If prediction is successful, dACCwould be said to encode congruency
information (Figure I: Test split; see [117] for an actual example of classification in Stroop; for more general discussion and
introductions, see [11,118–120]).

Yet it is often of interest to compare the encoding of multiple task variables. For example, does dACC encode congruency
selectively or more strongly than task-relevant target information? Here is where RSA becomes advantageous. A prototyp-
ical RSA would frame this as a singular problem of model comparison, in which twomodels (Figure I: Congruency and Tar-
get within Model geometries) compete to explain a common outcome: the full condition-by-condition similarity matrix of
dACC activity patterns (Figure I: Observed geometry, lower). The analysis tests whether the congruency model provides
a better fit to the observed dACC geometry, when compared with the target model.

This example highlights two key distinctions between MVPA classification and RSA. First, RSA operates at a level once-
removed from brain activity patterns, whereas classification operates directly on brain activity patterns (Figure I: Analytic
problem). This ‘second-order’ abstraction, [121], is the key basis for the flexibility of RSA. It allows representations from
fundamentally different types of spaces to be easily compared [16].

Second, RSA and classification differ in their direction of inference. In RSA, models are tested in their ability to explain
(similarity structure of) brain activity patterns (Figure I: Analytic problem, RSA, purple arrow), whereas, in classification, activity
patterns are tested in their ability to predict (or ‘recover’) a hypothesized model (Figure I: Analytic problem, Classification,
orange arrow [50]). This ‘forward’ direction of inference of RSA – from models, which are (typically) under experimental con-
trol, to brain activity measures, which are not – underlies its explicitness for comparing competing coding models. This is a
practical consideration that becomes critical with more complex experiments involving balanced factorial designs
(e.g., [122]) that include interactions (e.g., [108]), or when there is a need to control for a diversity of confounding similarity
structures (e.g., [63]). Furthermore, this strategy enables one to test whether the geometry is completely explained by the
models (i.e., with reference to a noise ceiling; [50,59]).

Finally, many strengths of classification are also accessible via RSA. Similarity measures can be chosen that account for
certain properties of the data [123] that popular classifiers handle well, such as structured noise (e.g., [96]). Additionally,
RSA models can be fit to individual trials, enabling, for example, use of RSA model coefficients to predict theoretically
specified single-trial behavioral indices [63].
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Figure I. Illustration of Prototypical Classification and Representational Similarity Analysis (RSA)
Approaches, Using a Toy Example of a Four-Stimuli Color-Word Stroop Experiment. Classification, analysis
and conclusion; trial-level activity patterns from a 2-voxel brain region (dorsal anterior cingulate cortex; dACC) are
depicted as points in 2D space. Classification corresponds to fitting a decision boundary (orange) that separates
patterns along a single factor (e.g., congruency; hollow or filled points) and is typically assessed via cross-validation (training
and test splits). Classification, analytic problem: classification directly uses brain activity patterns to predict the task model
(congruency). RSA, analysis and conclusion: condition-average dACC activity patterns (observed geometry) are depicted
as a spatial arrangement (or geometry) of four points (here, the color-word stimuli), with six interpoint distances (green
lines). The smaller the distance between patterns, the more similar they are (green numbers). The observed geometry can
also be represented as a similarity matrix, as can model geometries. RSA, analytic problem: in RSA, brain activity patterns
are first transformed into geometries, which are then explained by task models (target, congruency).

Trends in Cognitive Sciences
formulation of RSA, a set of competing models (hypotheses) are fit to an observed geometry
(e.g., of a brain region), and evidence for a hypothesis is obtained if its corresponding model
clearly provides a better fit. Once fit, however, the modeled representations (i.e., ‘coding
strengths’) can also be compared in a variety of useful ways, particularly in their ability to explain
behavioral measures (e.g., classical contrasts of control), in their sensitivity to superimposed ex-
perimental manipulations [59] (e.g., process-level factors), and in their ability to explain modula-
tions in other modeled representations (e.g., in downstream regions or subsequent timepoints;
termed ‘representational connectivity analysis’ [60]; Table 1). In conjunction, these tools can pro-
vide a rigorous means to decompose the black-box of control processes – the gap between pro-
cess manipulations and controlled behavior – into a more mechanistic path that is mediated by
the strength of specific representations.
626 Trends in Cognitive Sciences, July 2021, Vol. 25, No. 7
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RSA and Cognitive Control: A Collection of Exemplary Studies
To demonstrate the advantages of the RSA approach to cognitive control investigationmore con-
cretely, we review several illustrative studies, focusing on human neuroscience, that touch on
longstanding issues within this domain. While the questions differ, many of these studies share
a primary goal: to validate a mapping between a theorized control representation and measured
neural activity. Therefore, results primarily provide support for existing theory, rather than advanc-
ing or exploring new theoretical ideas. With this validating work in place, however, RSA method-
ology can now be used to directly refine and challenge existing theoretical models of cognitive
control. Relevant techniques are summarized within Table 1.

Task-Set Representation
A central element of many theoretical models of cognitive control are task-set representations
(e.g., [2,3]; reviewed in [61]). One expansive cognitive theory proposes that, during goal-driven
behavior, perceptual, action, and contextual information is intermediately bound into conjunctive
representations, so-called ‘event files’, that are used to guide action selection [43,62]. Support for
this account was recently found using RSA and electroencephalogram (EEG), in a pair of rule-
based action-selection studies [63,64]. The task required a manual response (left, right, up, or
down button-press) to be determined by applying a spatial translation rule (e.g., horizontal, verti-
cal, or diagonal) to a spatial stimulus (a dot in one of the quadrants of the screen). Conjunctive
coding was modeled as the components in the EEG geometry that were uniquely but stably
evoked by each stimulus, rule, and response combination (i.e., nonlinear combinations of these
Box 2. Full Factorial RSA

Full factorial RSA offers a convenient framework for removing confounds and studying interactions in neural representations.
Yet, at first, this approach can appear counterintuitive, particularly for those who have primarily used factorial designs in
univariate contexts. Returning to the example of the Stroop task, we illustrate the potential utility of this approach.

In the color-word Stroop task, the target factor (here, four colors) is crossed with the distractor factor (four words; Figure IA
left). This design permits at least three coding models to be specified: target, distractor, incongruency (Figure IA right). Each
model describes an ‘ideal’ coding scheme: for example, the target model would be observed in a region that only encoded
the hue (or correct response), regardless of the distractor or congruency. Through multiple regression, these model similarity
matrices can be fit jointly to the observed similarity matrix. The resulting β weights reflect the strength with which each factor
was uniquely encoded within the observed geometry. Indeed, when this approach was recently applied retrospectively to
fMRI activity from sensory, motor, and frontoparietal control regions, predicted dissociations in coding strength were found
at the group level (Figure IB left) and in relationships with individual differences in behavior (Figure IB right) [58].

But even this example does not reveal the potential precision of full factorial RSA. For example, the target model conflates a
variety of coding schemes: sensory coding (of hue), motor coding (of correct response), and more flexible, attentional tem-
plate coding (Figure IC: Decomposition). Adding a rule manipulation (Figure IC: Design, pink) enables these coding
schemes to be unconfounded because regions encoding an attentional template would be expected to reconfigure their
coding scheme on the basis of the task rule (Figure IC: Control-related models, Target features model; e.g., [108]; see dis-
cussion in [58] for additional decomposition). Likewise, a general rule-coding scheme (Figure IC: Rule model) can now be
specified to identify task-set representations.

Furthermore, full factorial RSA allows interaction hypotheses to be tested. For example, if increasing the frequency of
incongruent trials drives subjects to adopt a mode of proactive control [77], a corresponding increase should be seen in
the strength of rule coding. This interaction could be tested by comparing the strength of rule coding (Figure IC: Rule
model) in blocks with different probability of incongruency. More complex types of interaction hypothesis are also testable
(e.g., [63]; see also [124]).

An important limitation of full factorial designs are constraints on experimental time. Given that time is limited, each addi-
tional manipulation typically reduces the number of trials per condition. To some extent, however, a larger RSA matrix
(due to having more conditions) will counteract instability due to fewer trials. Nevertheless, manipulations should be added
judiciously, boosting precision only along specific dimensions. We strongly recommend piloting and simulation to guide
concrete design choices.

Trends in Co
gnitive Sciences, July 2021, Vol. 25, No. 7 627



TrendsTrends inin CognitiveCognitive SciencesSciences

0.2 0.6

50

150

St
ro

op
 e

ffe
ct

 (R
T)

RSA model fit ( )

DLPFC target
r = 0.44

DMFC incon.
r = 0.26

Region 

distractor
incon.
Target

0.0

0.1

M
od

el
 fi

t (
)

V1 vM1/vS1 DMFC DLPFC

* * *

=

White
Red

Purple
Blue

White
Red

Purple
Blue

White
Red

Purple
Blue

White
Red

Purple
Blue

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

Observed (simulated)

+
distr.White

Red
Purple

Blue
White

Red
Purple

Blue
White

Red
Purple

Blue
White

Red
Purple

Blue

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

Distractor

targetWhite
Red

Purple
Blue

White
Red

Purple
Blue

White
Red

Purple
Blue

White
Red

Purple
Blue

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

Target

+
White

Red
Purple

Blue
White

Red
Purple

Blue
White

Red
Purple

Blue
White

Red
Purple

Blue

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

incon.

Incongruency

+

Design

Target

Distractor
×

Rule
(name color,
read word)

×

Decomposition

Stimulus
('hue') Target features

(goal-dependent)

Response
Target

Control-related models

Blue
Purple

Red
White
Blue

Purple
Red

White
Blue

Purple
Red

White
Blue

Purple
Red

White
Blue

Purple
Red

White
Blue

Purple
Red

White
Blue

Purple
Red

White
Blue

Purple
Red

White

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

Rule

Name

Read

N
am

e

R
ea

d

N
am

e

R
ea

d

Target features

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

B
lu

e
Pu

rp
le

R
ed

W
hi

te
B

lu
e

Pu
rp

le
R

ed
W

hi
te

0

1Sim
ilarity

(C)

(B)

(A)

Figure I. A Decomposition of Color-Word Stroop via Full Factorial Representational Similarity Analysis (RSA).
(A) The similarity structure evoked during a Stroop experiment is modeled as a weighted sum of three hypothesized coding
schemes (for visibility, white-hued stimuli are displayed in gray). (B) Predicted dissociations in coding schemes were found
when applying this approach to fMRI data [58]. At the group level (left), target coding predominated in ventral somatomotor
cortex (vM1/vS1), whereas distractor coding predominated in V1 [error bars indicate 95% confidence interval (CI) of
between-subject variance; asterisks indicate significant pairwise model comparison]. Relative to dorsolateral prefrontal
cortex (DLPFC), coding of incongruency predominated in dorsomedial frontal cortex [dorsal medial prefrontal cortex
(DMFC), including dorsal anterior cingulate cortex (dACC) and pre-supplementary motor area (SMA)]. At the individual
level (right), subjects with stronger target coding in DLPFC, but weaker congruency coding in DMFC, had smaller
Stroop effects. (C) In full factorial RSA, the precision of models can be boosted by adding specific manipulations to
better isolate representations relevant to cognitive control.
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factors). Given that these constituent factors (i.e., stimulus, rule, and response) were orthogonal-
ized in the design, full factorial RSA was used to dissociate conjunctive coding from ‘pure’ coding
of each factor, similar to decomposition of main effects from their interaction. Furthermore, in a
novel methodological extension, a single-trial RSA method was developed, which enabled
within-subject brain–behavior relationships to be tested via hierarchical models.

Conjunctive coding emerged relatively early following the stimulus (i.e., before response coding),
was robustly related to trial-by-trial response time and – uniquely among the coding schemes –

explained a defining behavioral marker of event files (the ‘partial repetition cost’). A follow-up
628 Trends in Cognitive Sciences, July 2021, Vol. 25, No. 7
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Table 1. Summary of Various Techniques Used in RSA

Technique Description Pros (+), Cons (−) Refs

ANN-based RSA Method of specifying RSA models based on
ANN representations

+ More direct link between data and formal
models

[82], see also [140]

+ Less computationally intensive than
estimating unit-to-unit mappings
– Cannot predict response to novel
conditions

[13,16]

Full-factorial RSA Type of experimental approach that uses
crossed factors and multiple regression to
decompose neural coding

+ Efficiently boost model specificity
+ Test interaction of representations
+ Handles complex designs
– Number of trials, experimental time

[63,108]; see also [122], discussion in
[58]; see [124] for related technique

Single-trial RSA Analytic procedure for fitting RSA models at
single trial level

+ Test within-subject brain–behavior
relationships

[63,64]

+ Supports hierarchical or joint modeling [141–143]

– Autocorrelation confounds e.g., [144]

Cross-task RSA Type of analysis that examines similarity
structure within battery of tasks.

+ Assess ‘neural construct validity’ [88]; see also [95]

+ Use to rigorously assess replication [99]

RSA fingerprinting Method of assessing presence of stable
individual differences in representational
structure

+ Mitigates individual differences due to
anatomical factors
– Requires repeated measures

[114]; see also [54]

Cross-subject RSA Method of assessing task-dependent similarity
in response topographies

+ Useful when individuals can be
meaningfully grouped (e.g., by genetic
relation)

[115]

– Potential confounds with univariate
activity

See discussion in [92]

Unbiased similarity
measures

Type of similarity measure for which the
expected value is not impacted by
measurement error

+ Useful for unbalanced designs
– Increased variance
– Each condition must appear in >1 run
+ Also robust to 'design bias' issues

Techniques: [13,96,97,124]
Unbalanced design: e.g., [75]
Increased variance: [145]
Design bias: [98]

Representational
‘connectivity’
analysis

Type of analysis that examines covariation in
coding strength (across region, timepoint).
When constrained by RSA models, this
covariation is assessed along specific coding
variables

+ Test representational interactions
(e.g., btwn. PFC and downstream coding)
+ Constrained or unconstrained by RSA
models
– Third variables, directionality

PFC–downstream interactions:
e.g., [3,146]
Unconstrained: [60,147];
constrained: e.g., see interaction
analyses in [108]
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experiment imposed an additional stop-signal manipulation on the design, to assess which, if
any, coding scheme was impacted by inhibitory control processes [64]. Strikingly, only conjunc-
tive coding was suppressed, shortly after the stop signal was presented, selectively on success-
fully stopped trials, with the degree of suppression uniquely predicting stopping success. Thus,
conjunctive coding reflects an important locus of action selection, which is both proximal to be-
havior and a target or intermediary of inhibitory control. A useful direction for future work will be
to clarify the neuroanatomical generators of this conjunctive EEG code [e.g., via fMRI, neurophys-
iology, or perturbative approaches, such as transcranial magnetic stimulation].

Another major focus of control research is to understand how task sets are regulated. Most com-
monly, this has been studied within multitasking and task-switching paradigms, in which compet-
ing task sets are activated and frequently switched across trials [65,66]. Foundational to this
research has been the behavioral switch cost: across consecutive trials, humans typically are
slower and more error-prone at switching tasks versus repeating them. In theory, cognitive con-
trol processesmust overcome this task-set ‘inertia’ [67] and rapidly activate a new task represen-
tation when needed (‘reconfiguration’) [24]. Task representations within frontoparietal cortices
(through interactions with striatum) are thought to mediate these dynamics [2,3,61].
Trends in Cognitive Sciences, July 2021, Vol. 25, No. 7 629
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A strong correspondence between this cognitive theory of task-switching and frontoparietal
coding dynamics was recently demonstrated via RSA and fMRI [68]. By conducting RSA on
consecutive trials within a cued task-switching experiment, this study illustrated that the strength
of task representations in these regions closely tracked inertial and reconfiguration phenomena:
task representations were stronger (higher trial-to-trial similarity) following repeat versus switch
trials (inertia) and were additionally strengthened across the cue-to-target epoch (reconfiguration).
Critically, these dynamics were also aligned to behavior, such that stronger reconfiguration of the
task representation was associated with reduced switch costs.

Sometimes, however, an irrelevant task set can be a potent competitor, not because of its recent
use, but because of stable differences in automaticity. This type of regulation is studied in
stimulus–response conflict paradigms, such as Stroop. How the brain actually regulates this
interference is a matter of ongoing debate. While foundational models of control propose that
key mediators of Stroop interference are LPFC rule and attentional template representations
(e.g., [3,69]), recent evidence suggests that cognitive control plays less of a role than originally
thought (e.g., [70]; see also [71,72], but see [73,74]). This debate is undoubtedly complicated
by the fact that the classical Stroop interference effect is a highly multidetermined measure, likely
reflecting a mixture of processes of various levels of automaticity. Here, the RSA framework can
assist. Decomposing the Stroop paradigm with full-factorial RSA (Box 2 [58]) can provide a rich
set of coding variables that can, in turn, be used to decompose classical behavioral measures
from Stroop (as in [58]), or be tracked as a function of interference-modulating manipulations
(e.g., proportion congruency [75]). For example, it is possible that top-down control processes,
mediated by LPFC rule coding, are better captured by behavioral measures other than the clas-
sical Stroop interference effect, such as its variability [76]. Similarly, these control processes and
associated LPFC coding schemes may only strongly guide behavior in certain scenarios, such as
when interference is likely [77] or when task statistics engender habitual responding [78]. Thus, an
RSA approach can not only help to constrain the set of mechanisms that putatively mediate
response conflict, but also may clarify how best to measure them within behavior.

Learning Latent Task Structure
Real-world tasks often have a latent structure that unfolds in time. Learning this structure can
facilitate performance and increase the probability of advantageous outcomes by enabling the
individual to predict which actions are appropriate in given contexts. Recent accounts have postu-
lated that latent structures are encoded bymedial and orbitofrontal cortex and, through interactions
with midbrain circuitry, serve to guide the formation of frontoparietal task representations that
orchestrate goal-directed behavior (i.e., planning and action preparation) [79,80].

This area, as with many others in cognitive control, is amenable to formal modeling. One useful
method of formalizing hypotheses in this domain has been with artificial neural networks
(ANNs), which perform tasks via distributed representations [48,81], learned during training. By
linking artificial representations to those observed in the brain, neural data can constrain ANN
models of cognitive control. Given that each of these representations can be high dimensional,
often the simplest way to assess such a link is through their geometry – that is, via RSA ([16]).

This feature of RSA was effectively used in a recent fMRI study [82], in which both human partic-
ipants and an ANN learned about the latent sequential structure present in a pair of everyday
tasks: making coffee or tea. Although some actions could be freely chosen (e.g., whether to
add sugar or water first), others had to be made based on previous choices (e.g., only serve
the drink after both ingredients had been added exactly once). Successfully performing such a
task requires organizing and maintaining relevant information from preceding timesteps, which
630 Trends in Cognitive Sciences, July 2021, Vol. 25, No. 7
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the critical ‘context’ layer encoded within the ANN (Figure 2A left). The similarity structure that
emerged within this layer served as the RSA model (Figure 2A, Context layer model), and was
fit to (the similarity structures of) neural activity patterns recorded from participants during
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Figure 2. Diagrams of Two Reviewed Representational Similarity Analysis (RSA) Methods. (A) Mapping interna
representations of an artificial neural network (ANN) to brain activity with RSA [82]. An ANN was trained to perform a
hierarchical action sequence task, in which the action at one point in the sequence depended on previously chosen
actions (e.g., ingredients could only be added once; cream could only be added to coffee). After training, the ANN simulated
each step of each sequence (depicted: the fourth step of two different sequences), and the resulting activation patterns
(reddish nodes) within the context layer were extracted; the similarity structure of these patterns served as the contex
layer model (right). A competing model (sequence model), which contained only information regarding position-in-sequence
(i.e., not previous choices) was built by taking the distance (absolute difference) between each pair of steps (green arrow)
(B) RSA ‘fingerprinting’ [114]. Individuals first performed a famous-face classification task, in which an exemplar face, linearly
morphed between two famous faces (e.g., Brad Pitt and Mel Gibson), had to be classified (as either Brad or Mel). Each indi-
vidual's categorizations were expressed in similarity matrix form (here, depicted as 2D perceptual geometries) then used as
models to explain (green and purple arrows) neural similarity matrices (neural geometries) from each and every subject
Idiosyncratic brain–behavior relationships were identified in brain regions (i.e., right lateral prefrontal cortex; rLPFC) fo
which the within-subject models (green arrows) were better fit on average than the between-subject models (purple arrows)
Neural geometries were then used to predict the patterns of interference within a separate attentional search task that used
the same stimulus set (gray arrow).
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performance of the same task. This model was selectively associated with representations in
medial PFC (MPFC; including mid-cingulate cortex), above and beyond competing models
defined from other behaviorally relevant variables (e.g., Figure 2A, Sequence model). The clear
specificity of this result, both to MPFC and to the context model, suggests that MPFC could pro-
vide downstream regions with a flexible representation of progress to current goal.

Follow-up studies could further strengthen this interpretation by examining how the strength of
the MPFC context representation covaries with task representations in other areas and with
other manipulations: for example, coordination with LPFC and premotor cortex may be critical
during situations of high response conflict, or with hippocampus during learning. Another clarify-
ing direction could be to make the model competition more intense: for example, by testing alter-
native representations derived from competing network architectures (e.g., [83,84]). Similarly,
recent work that could be useful to integrate here has used classification and RSA methods to
identify unique mechanisms for serial-order control, implicating hippocampal and frontoparietal
regions in forming hierarchical and ‘chunked’ representations [85–87].

Domain-General Cognitive Control
A longstanding interest within the field is to refine the constructs of cognitive control (e.g., [1]). Of
particular interest is where to draw the boundaries: which functions should be considered gen-
eral, commonly engaged by different tasks, and which distinct? A construct validation approach
is often used to address this issue: measures from a battery of tasks are collected for each indi-
vidual and, from the covariance structure of individual differences among the tasks, latent factors
are estimated that correspond to the hypothesized constructs. Evidence for the construct is pro-
vided if factors are interrelated in predicted ways (e.g., [31,32]). However, prior studies of the gen-
erality of control functions have yielded mixed results (e.g., [71,73]). Yet, these studies have
almost exclusively used behavioral measures to estimate cross-task factors. Brain activity mea-
sures may give additional leverage, as they can provide more proximal, higher-dimensional read-
outs of neural mechanisms.

Through the use of a novel meta-analytic, cross-task RSA, an important first step toward ‘neural
construct validation’ of cognitive control was recently reported [88] (see [51] for a complementary
voxel-wise meta-analysis). This work included fMRI data sets spanning three domains: cognitive
control, negative affect, and pain. The key region of interest was the anterior midcingulate cortex
(aMCC), a region that has appeared functionally ubiquitous [89] and challenging to characterize
[90]. The researchers found that aMCC representations converged across disparate pain modal-
ities (thermal, mechanical, and visceral) and separately across different subdomains of negative
affect (visual, social, and auditory narrative). By contrast, cognitive control representations not
only diverged from these two domains, but also diverged from each other, regardless of whether
they were from common or distinct subdomains (‘working memory’, ‘response selection’, and
‘response inhibition’). That is, no task-general control representations were detected.

Limitations of this study are important to bear in mind. In particular, site factors (e.g., study loca-
tion, scanner, and research group) confound the manipulations of task domain. Likewise, be-
cause this meta-analysis was inherently also a cross-subject RSA (i.e., all pattern similarities
were estimated between different subjects), the analysis was not optimized to capture finer-
grained representational structures that could be subject specific (i.e., idiosyncratic [91,92]).
Indeed, finer-grained or idiosyncratic response topographies may best define the aMCC signal
relevant for cognitive control (as, e.g., suggested by differences in developmental time courses
between domains; c.f. [93,94]). Nevertheless, the potential of cross-task RSA is appealing.
When tasks form the dimensions of a representational similarity matrix, RSA naturally assesses
632 Trends in Cognitive Sciences, July 2021, Vol. 25, No. 7
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cross-task convergent and divergent validity at the level of neural (e.g., fMRI signal) implementa-
tion (see also [95]). Indeed, similar to construct validation approaches, several RSAmethods have
been developed that use unbiased similarity measures to explicitly account for measurement
error (Table 1) [13,96–98]. More broadly, this cross-task view of representations is also reflected
in the recent recommendation to use pattern similarity as a rigorous way to assess replication of
task-based fMRI results [99].

Interactions with Motivational Value
There has been a growing appreciation of the tight relationship between motivation and cognitive
control [100,101]. In several recent accounts, deciding whether and how to engage cognitive
control is a value-based process, in which the benefits of goal attainment are integrated with
the cost of various control strategies [102]. This interaction of motivation and cognitive control
is thought to involve dopaminergic signaling and frontostriatal circuitry [103–107]. One way in
which this interaction may manifest is as an increase in the gain (i.e., sharpening) of frontoparietal
task rule coding. Indeed, in a recent cued task-switching study usingMVPA classification, reward
incentives (which varied trial-by-trial and were precued) increased the distinctiveness of
frontoparietal task-set representations, and these task-set coding changes explained individual
differences in performance improvement on incentivized trials [52].

Building on this work, the same question was examined from within the RSA framework, via EEG
[108]. Relative to [52], the use of full factorial RSA allowed a richer set of coding variables to be jointly
estimated, including not only the task rule (as in [52]), but also two stimulus-feature models (target
and distractor) and a response (motor) model. While incentives enhanced target stimulus, response,
and rule coding (i.e., all but distractor representations), only rule coding was selectively enhanced
during rule updating (i.e., on switch versus repeat trials), and emerged before trial onset, consistent
with a proactive control mechanism [77]. Completing the link with behavior, individual differences in
the strength of this interaction between rule coding and incentive robustly explained the amount by
which response latencies decreased as function of incentives, even when controlling for incentive-
driven changes in other coding schemes. The results of this elegant study converge with those of
[52], but further suggest that this incentive-driven enhancement in rule coding reflects proactive con-
trol [77], precedes other incentive-driven representational changes, and may be dependent on
updating, as opposed to other types of control processes (e.g., rule maintenance).

From these foundational results, the research paradigm can be expanded to address additional
critical questions regarding the motivational properties of incentivized task contexts, such as the
effects of motivational valence (i.e., positive/approach or negative/avoidance), incentive catego-
ries (i.e., primary or secondary), subjective preferences, and the timing of incentive cues
(i.e., preparatory or target linked) [109,110]. When used with neuroimaging methods of higher
spatial resolution (such as fMRI), RSA offers a means of identifying the neural systems underlying
these (potentially massively distributed) EEG codes.

Individual Differences
Cognitive control is strongly impacted by individual differences [2,77,111]. Some of this variability
may be localized to frontoparietal networks, in which functional differences may emerge from or
manifest as variability in task-relevant representations ([2,112]). Thus, studying individual differ-
ences in frontoparietal representations can be a powerful test-bed for models of control. Likewise,
RSA may provide novel ways of approaching such questions, as illustrated by two recent studies.

A longstanding construct in models of control of visual attention is an attentional template
representation, encoded by frontoparietal networks, which contains visual information regarding
Trends in Cognitive Sciences, July 2021, Vol. 25, No. 7 633



Outstanding Questions
In stimulus–response interference par-
adigms, such as Stroop, how does
cognitive control state (e.g., proactive/
reactive) or other contextual and state
factors (e.g., trial history, proportion
congruency, or amount of practice) im-
pact target, distractor, and task-set
(rule) representations?

Can more detailed representational
models of dorsal anterior cingulate
cortex (dACC) ‘congruency’ coding
(based on, e.g., model-derived response
conflict, performance-monitoring infor-
mation, or value computations) be used
to shed light on the function of this
region?

Can RSA be used to model the trial-
by-trial dynamics of task structure
learning?

What is the evidence for domain
generality (i.e., cross-task similarity) of
cognitive control representations?

How do various motivational factors
(e.g., valence, incentive type, or prefer-
ences) modulate cognitive control rep-
resentations? Is it through a common
mechanism of sharpened task-set
coding?

To what degree are cognitive control
representations idiosyncratic, that is,
serving as a ‘fingerprint’ of the individual?

What are the psychometric properties
of RSA with regard to individual
differences analyses (e.g., test–retest
reliability)? Can neuroimaging-based
RSA be optimized to more powerfully
address individual difference questions?

Within fMRI-based RSA, what methods
(e.g., involving amount of data per sub-
ject, preprocessing decisions, region
definitions, denoising procedures, or
similarity estimation) are most effective
for measuring prefrontal coding?
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the current target [46] (e.g., an object for which you are searching). At the heart of thesemodels is
a computation of similarity between template features and objects within the visual field:
representations of objects are preferentially enhanced as a function of similarity to template
(reviewed in [113]). But similarity is, to some degree, subjective [54]. Subjective perceptual differ-
ences – idiosyncrasies in perceptual representations – could therefore plausibly drive individual dif-
ferences in attentional efficiency.

Although this question may appear slippery, it can be naturally addressed with RSA, as demon-
strated in a creative fMRI study [114]. Participants first classified identities of faces linearly
morphed between two famous individuals (Figure 2B). In an RSA ‘fingerprinting’ procedure
adapted from object perception research [54], which hinges upon on the ‘second-order’ nature
of RSA, participants’ fusiform face area and lateral PFC were found to encode the stimuli in a for-
mat that captured their own idiosyncrasies in perceptual categorizations. Critically, an attentional
task was performed next, using these same face-morph stimuli as distractors. Only within right
lateral PFC did an individual's neural similarity between a given target and distractor –measured
during the initial categorization task – predict the degree to which the distractor disrupted
(prolonged) their search. This study demonstrates a tight linkage between perceptual categoriza-
tion, attentional search, and the representational structure in LPFC, while hinting at a privileged
role for LPFC in representing categories when relevant for impending decisions. More generally,
this study illustrates the utility of the second-order nature of RSA: by abstracting away from brain
activity patterns, toward their geometry, investigators can more directly compare individuals on
cognitive dimensions of interest. Beyond identifying idiosyncratic representations, such an ap-
proach could be an effective medium for comparing subgroups (e.g., older versus younger
adults), circumventing issues of gross anatomical change.

But sometimes the functional topographic organization of cortex is of interest. A recent study used
genetic contributions to individual differences in functional organization to explore task coding
within the FPN [115]. Cross-subject RSA was applied to fMRI images of the N-back working
memory task to examine the similarity structure of activation patterns between paired individuals,
contrasting monozygotic (identical) and dizygotic (fraternal) twin pairs, as well as non-twin siblings
and unrelated pairs. Two contrasting models were compared: one of working memory load, the
other of stimulus category. The coding of these dimensions was anatomically specific, such that
frontoparietal regions showed higher pattern similarity in pairs with greater genetic similarity, but
critically, only for the load model. Moreover, these patterns exhibited functionally relevant individual
differences: in related (but not unrelated) pairs, stronger common coding of working memory load
was associated with better N-back performance. These results provide clear support for the idea
that genetic factors are entwined with the development of cognitive control functions [116], and
suggest that these factors are expressed in the task-dependent functional organization of
frontoparietal networks. Here, the use of RSA methods provided an efficient way to both compare
different coding models and identify behaviorally relevant individual differences in the strength of a
given coding scheme.

Concluding Remarks
RSA provides a convenient yet rich framework for decomposing control-related neural activity
into measures that better correspond to representational components of theories. Of course,
there are still many unknowns regarding the limitations of these tools (Box 3), as well as important
open theoretical questions (see Outstanding Questions). As we have illustrated, however, the
RSA framework has potential for constraining mechanistic theories of cognitive control. We
hope that this review inspires other investigators working in this area to consider whether an
RSA approach might be usefully applied to their own research questions.
634 Trends in Cognitive Sciences, July 2021, Vol. 25, No. 7



Box 3. Effective fMRI Measurement of Cognitive Control Representations

Cognitive control is complex and, perhaps not coincidentally, the brain regions associated with it, such as dorsolateral pre-
frontal cortex (DLPFC), are challenging to study. Neurophysiologists have long appreciated the difficulty in characterizing
the response profiles of neurons within this region (e.g., [125,126]): neuronal selectivities appear to be dynamic, often
changing within single trials [127], and are highly conjunctive, reflecting a mixture of task attributes [128]. At larger spatial
scales, the principles by which LPFC is functionally organized have been difficult to establish (e.g., [49]). In fact, a recent,
influential model of DLPFC embraces the confounding nature of this region by positing that neural populations are ran-
domly connected to their input layers [42,129]. Random connectivity implies a lack of topographic organization, which
would cast doubt on the utility of fMRI pattern analysis methods for identifying localized task representations in DLPFC.

Indeed, recent evidence suggests the signal-to-noise ratio in PFC fMRI activation patterns is relatively low. A meta-analysis
of MVPA classification studies concluded that mean classification accuracies were considerably lower in PFC than in pos-
terior sensory cortex [130]. A pair of recent RSA studies also illustrates the potential issue. In the first, macaques were
trained on a reward-based decision-making task while single-unit activity was recorded [122]. Full factorial RSA revealed
a triple dissociation of coding schemes across PFC regions. Yet this same full factorial RSA design, when adapted for
human fMRI, found considerably weaker results in putatively homologous regions [131].

Although the scale of topographic organization (or lack thereof) in PFC is one important open question, there are many
other potential limiting factors that also likely impact our ability to measure prefrontal coding effectively. More research
on the importance of these factors is needed. For instance, dense sampling approaches (fewer subjects, more data per
subject) are critical for maintaining signal in the presence of strong individual variability in functional organization [132].
Yet such an approach is rare in cognitive control research, despite the pronounced sensitivity of the associated
frontoparietal brain regions to individual differences [133,134]. Thus, individual-specific areal definitions (e.g., [135,136])
are another important avenue to examine. Conversely, expanding the spatial scale of analysis, from areas to networks,
has proven highly effective in other domains [137]. Of course, a loss of anatomical precision necessarily comes with this
expansion; but, for many cognitive-level inferences, areal versus network-level specificity may not be critical. Finally, rep-
etition suppression may be an effectivemeans to achieve subvoxel-level precision in measuring representations [138,139].

Importantly, within each of these alternative approaches, the logic of RSA – explicitly modeling neural similarity structure –
is applicable. Thus, for those interested in PFC coding of control, we predict that fluency in RSAwill be valuable, regardless
of measurement technique.
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