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Abstract: Understanding individual differences in cognitive control is a central goal in psychology and
neuroscience. Reliably measuring these differences, however, has proven extremely challenging, at least
when using standard measures in cognitive neuroscience such as response times or task-based fMRI activity.
While prior work has pinpointed the source of the issue — the vast amount of cross-trial variability within
these measures — no study has rigorously evaluated potential solutions. Here, we do so with one potential way
forward: an analytic framework that combines hierarchical Bayesian modeling with multivariate decoding of
trial-level fMRI data. Using this framework and longitudinal data from the Dual Mechanisms of Cognitive
Control project, we estimated individuals’ neural responses associated with cognitive control within a color-
word Stroop task, then assessed the reliability of these individuals’ responses across a time interval of
several months. We show that in many prefrontal and parietal brain regions, test–retest reliability was
near maximal, and that only hierarchical models were able to reveal this state of affairs. Further, when
compared to traditional univariate contrasts, multivariate decoding enabled individual-level correlations to
be estimated with significantly greater precision. We specifically link these improvements in precision to the
optimized suppression of cross-trial variability in decoding. Together, these findings not only indicate that
cognitive control-related neural responses individuate people in a highly stable manner across time, but also
suggest that integrating hierarchical and multivariate models provides a powerful approach for investigating
individual differences in cognitive control, one that can effectively address the issue of high-variability
measures.
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1 Introduction

A major goal within psychology and neuroscience is to understand the mechanisms that give rise to psycho-
logical diversity. How are two minds alike or distinct, in terms of psychological processes? What neural
mechanisms underlie this variability? Such questions of individual differences are incredibly important to
study: not only do they intrinsically interest many, but they also provide a means to test virtually any cognitive
psychological theory (cf., Underwood, 1975), as well as yield direct clinical and educational applications
(Diamond, 2013; Engle, 2002; Cole et al., 2014). Spurred by these motivations, cognitive neuroscientists
have often sought to identify measures of human brain activity that can be used as markers of individual dif-
ferences. Yet, this enterprise has proven highly difficult, at least when using common non-invasive measures
of brain activity, such as task-based fMRI.

One of the main challenges in studying individual differences can be traced to issues of measurement. In
the laboratory, people may score differently on experimental tasks due to different reasons, many of which
have nothing to do with cognitive properties of the individual that are stable over time, here termed cognitive
traits, but instead with properties of the particular measurement occasion, here termed nuisance or noise
factors. Thus, when reasoning about cognitive traits, researchers run the risk of misattributing a particular
finding or pattern of results that in fact arise from more transient factors.

The statistic of test-retest reliability is instrumental in mitigating this risk. In particular, test–retest reliability
is estimated by repeatedly acquiring the same measures from the same sample of individuals over an
extended period of time (typically on the order of days, at minimum). In such repeated-measures designs,
differences observed between individuals that are constant over test repetitions (also known as “sessions”)
are assumed to reflect traits, while changes within individuals over repetitions are assumed to reflect noise
(which may include systematic longitudinal effects, such as learning). The relative proportion of trait
variance defines the test-retest reliability, or the “traitness” of the measure in question. Yet, despite this
grounding theoretical framework, in practice it has not been easy to identify strong individual differences
in cognition (conventionally, r > 0.7; Matheson, 2019). This difficulty has been particularly salient with
measures derived from classical cognitive experimental tasks (Hedge et al., 2018) and adaptations of these
paradigms for fMRI. Perhaps most confoundingly, however, poor test-retest reliability has often been reported
in psychological domains overwhelmingly assumed to be subject to strong individual differences, for example
cognitive control and working memory (Elliott et al., 2020). Such failures have invited pessimism over the
usefulness of these popular methods for individual differences research (Elliott et al., 2020).

Much of these pessimistic conclusions, however, overlook a nuanced theoretical issue concerning the structure
of noise variability: it is hierarchical. Moreover, ignoring this hierarchical structure will lead to an overly
pessimistic estimate of reliability (Chen et al., 2021). To elaborate, within the standard test-retest design,
noise variability can be decomposed into (at least) two levels: trial-level variability (i.e., changes over
trials, within repetition) and repetition-level variability (i.e., changes over repetitions, aggregated over trials).
Overwhelmingly, prior work has estimated reliability through a two-stage summary statistic approach, which
involves first aggregating a measure over trials, then assessing the relative proportion of trait variability via
linear correlation (see Figure 1 for a walkthrough; see also Haines et al., 2020). But, because the estimation of
the linear correlation does not use any information regarding the amount trial-level variability, the summary
statistic approach essentially “conceals” the negative impact such variability has on estimated test–retest
reliability. In other words, summary statistic estimates of test–retest reliability are underestimated (Figure
1). The amount of underestimation depends in part on how strongly the measure differs across trials, and
how effective the first-step aggregation was at reducing the standard errors of the scores. Theoretically, it is

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2024.04.24.591032doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.24.591032
http://creativecommons.org/licenses/by-nc-nd/4.0/


possible that the bias is small, but true physiological and behavioral measures vary too strongly over trials
for this approach to be accurate in reality (i.e., given attainable amounts of data; Rouder et al., 2023).

This consideration has motivated an alternative, hierarchical Bayesian modeling approach for assessing
individual differences (Chen et al., 2021). A hierarchical Bayesian approach does not attempt to squash
trial-level variability through aggregation, but instead, it attempts to directly estimate the magnitude of each
component of variability from the disaggregated trial-level measures. In this way, the negative impact of
trial-level noise on reliability can be explicitly factored out (Figure 1B). In line with this reasoning, results
from studies adopting a hierarchical Bayesian approach to individual differences suggest a more optimistic
outlook, in which individual differences can in some cases be identified after accounting for the contributions
of trial-level noise (Chen et al., 2021; Haines et al., 2020; Snijder et al., 2023).
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Figure 1: See following page for caption.

Nevertheless, these studies have also illustrated that the hierarchical Bayesian approach is not a panacea for
investigating individual differences with high-variability measures (Rouder et al., 2023). This is because
the issues caused by high trial-level variability are not fully circumvented in hierarchical Bayesian models.
Instead, the issues are redirected, so that they manifest differently within the model estimates. That is, instead
of diminishing reliability, increasing trial-level variability leads to more uncertainty in the reliability estimate
(Figure 1C). Within a recent report, for example, hierarchical Bayesian reliability estimates of fMRI contrasts
within select regions of interest were typically higher than their summary statistic counterparts, but were also
highly uncertain, with the lower-bound confidence interval generally located well below zero (Chen et al.,
2021). Thus, although this “redirection” is useful in that it yields unbiased estimates of test–retest reliability,
it does not allow individual difference researchers to avoid grappling with issues of overwhelming trial-level
variability.

A plausible remedy for these issues is provided by multivariate pattern analysis (MVPA) decoding. By
exploiting the high spatial dimensionality of fMRI, decoding can suppress trial-level variability by identifying
dimensions of neural coding that are relatively insensitive to such fluctuations (Figure 1D). Yet, prior work
on individual differences has almost entirely eschewed these noise-suppressing decoding techniques, and has
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instead opted to use more traditional univariate models, which can be much more vulnerable to trial-level
variability. This combination of facts suggests a constructive hypothesis: MVPA decoding can improve
the power of individual differences analyses by increasing the certainty (i.e., precision) of the estimated
trait-level parameters. Some indirect evidence is indeed in line with this hypothesis (Kragel et al., 2021; Xu
et al., 2018; Yoo et al., 2019), however, a direct and more extensive investigation of these issues is warranted,
in particular within the domain of task-related fMRI (cf., resting state).

Here, using a subset of densely-sampled individuals (N = 27, 6 sessions each) acquired as part of the Dual
Mechanisms of Cognitive Control fMRI dataset (Braver et al., 2021), we compared the sensitivity of various
approaches to individual differences analyses using a classical fMRI measure of cognitive control function,
the Stroop-effect contrast (incongruent versus congruent trials), as derived from the color-word Stroop
(1935) task. We compared the reliability of a traditional univariate version of this measure to a multivariate
contrast, obtained from an MVPA decoder, that we specifically constructed to suppress trial-level variability.
To provide an accurate and complete comparison, we performed these analyses within the context of a
hierarchical Bayesian modeling framework for individual differences (Chen et al., 2021) and subsequently
compared the results to those derived from a summary statistic approach. In line with theory, we found that
relative to univariate models, MVPA decoding improved the ability to identify strong individual differences
in fMRI measures of cognitive control from frontoparietal cortex. In a hierarchical Bayesian framework,
these improvements manifested as increased estimation certainty (i.e., precision) of individual difference
parameters. These results highlight the efficacy of a joint hierarchical Bayesian–multivariate decoding
approach, in which the statistical accuracy of hierarchical Bayesian models is boosted by the statistical power
of MVPA decoding, and suggest that non-invasive neural measures like task-based fMRI may be an adequate
means for addressing questions regarding individual differences in cognition.
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Figure 1: Graphical intuition for test-retest reliability and benefits of multivariate pattern analysis.
A, B, Two approaches to estimating test-retest reliability: summary statistic versus hierarchical modeling.
Psychological experimental tasks are typically composed of hierarchically structured “levels”: trials are
completed within testing repetitions (e.g., sessions) within individuals. Measures derived from such tasks
exhibit some amount of variability at each of these levels: for example, a person’s performance may
fluctuate over trials, across different days (repetitions), while also reliably differing over time from another
person’s average performance (individual differences). Rigorously studying individual differences requires
disentangling individual variability from variability at the other levels. This extent to which a measure
supports such disentangling is quantified by test–restest reliability (TRR). A, top, The summary statistic
approach estimates reliability by first aggregating over trials per individual, attempting to quash trial-level
variability prior to computing the proportion of individual-level variance. Despite this aggregation, however,
a potentially substantial amount of residual trial-level variability remains “concealed” in the aggregated
scores, and thereby in the denominator of the reliability statistic. A, bottom, In hierarchical approaches,
however, the variance is decomposed into separate components, and trial-level variability is explicitly factored
out of the test–retest reliability computation. B, When trial-level variability is high (pie chart), the test–retest
reliability estimated through summary statistical approaches (red vertical line) will tend to be shrunken
relative to estimates from hierarchical Bayesian models (HBM; the central tendency of the grey density
indicates the average posterior test–retest correlation). By contrast, in hierarchical models, such heightened
trial-level variability would instead manifest as decreased estimation precision (spread of grey density).
Unfortunately, both of these scenarios would impair inferential power. D, Common forms of multivariate
pattern analysis attenuate trial-level variability. Left and right panels show the same (simulated) fMRI data,
acquired from a hypothetical region of interest composed of two voxels (x and y axes). Individual trials of a
Stroop task evoked particular patterns of activity across these two voxels (points). Each trial belongs to one
of two conditions, incongruent (red) or congruent (blue), whose difference forms the Stroop effect contrast.
Both univariate analysis and multivariate pattern analysis can be used to compute the Stroop effect contrast.
Left panel, In a univariate analysis, measures from different voxels are aggregated together uniformly, by
taking the spatial mean (i.e., each voxel is weighted equally then summed). Graphically, this corresponds
to projecting the condition means onto the unity line, which runs through the origin and 𝑥 = 1, 𝑦 = 1
(diagonal dotted line). Yet, depending on the shape and relative configuration of these distributions, such a
projection may lead to a highly variable measure (overlapping histograms along unity line). Right panel,
In a multivariate pattern analysis, measures from different voxels can be aggregated together optimally.
Graphically, this corresponds to projecting the condition means onto the line that yields the most separation
between projected classes (i.e., minimizing overlap between the histograms of the projections). As a result,
this procedure can lead to projections in which trial-level variance is squashed relative to univariate analysis.
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2 Method

2.1 Subjects

Data were obtained as part of the Dual Mechanisms of Cognitive Control project (Braver et al., 2021). All
subjects consented to participate in the study under Washington University IRB protocols. At the time
of analysis, 32 subjects had completed the test–retest component of this project. We selected 27 of these
subjects (number of females = 16, age range at initial session = [19, 42]) to include in the present analyses.
This selection ensured that all subjects in our sample had complete data for all sessions that met minimal
quality-control criteria (for each scanning run, complete behavioral and fMRI measures, low numbers of
missed responses, and motion levels and dropout artifacts that were qualitatively judged to be modest). Of
these subjects, 15 had also participated in the Human Connectome Project Young Adult study Van Essen
et al. (2013).

2.2 Design

As much of the debate over test-retest reliability has focused on the color-word Stroop (1935) task as a
paradigmatic example (e.g., Hedge et al., 2018; Rouder and Haaf, 2019; Haines et al., 2020), we focused
exclusively on data from this task within the larger DMCC project dataset Braver et al. (2021). In this task,
names of colors were visually displayed in various nameable hues, and subjects were instructed to “say the
name of the color, as fast and accurately as possible; do not read the word.” The primary manipulation
concerns the congruency between the meaning of the text and the hue in which it is rendered. A colored
word is either “congruent”, such that the hue corresponds to the hue the text expresses (e.g., “RED” in red
font), or “incongruent” (e.g., “GREEN” in blue font).

The Stroop dataset within the DMCC project is highly amenable to assessing test-retest reliability due to
the extensive amount of repeated measures acquired. Each subject completed several hundred trials of this
task within each of six scanning sessions, administered on different days. By design, these six scanning days
were clustered into two “repetitions” of three sessions – an initial “test”, then subsequent “retest” repetition.
Across subjects, the time between repetitions spanned 36–1558 days (median = 169, IQR = 258). Assessing
test–retest reliability across these repetitions thus reflects a relatively challenging benchmark for consistency.

These sessions were largely similar within each repetition. Each consisted of two scanning runs of approx-
imately 12 minutes that contained a minimum of 108 trials, with inter-trial intervals sampled with uniform
probability from one, two, or three TRs (1.2, 2.4, or 3.6 s). The same set of eight words, and set of eight
corresponding hues, were used in each session as stimuli. Yet by design, the sessions also subtly differed in
ways that influenced the size of the behavioral congruency effects that they elicit. Although these manip-
ulations were conducted to investigate questions outside of the scope of the present study, we exploit them
in our test–retest reliability analyses. In what we have referred to as the “baseline” type of session (216
trials), the first session within each repetition, behavioral congruency effects were maximized (Braver et al.,
2021). This maximization was due to the low frequency of incongruent relative to congruent trials (33%;
Logan and Zbrodoff, 1979). The other two “proactive” and “reactive” sessions (216, 240 trials), which were
counterbalanced in order across participants, manipulated expectancies regarding incongruent trials. The
expectancy manipulations were accomplished by increasing the relative percentage of incongruent versus
congruent trials, either in a session-wide manner (to 67%, proactive session), or selectively for specific
colors (while keeping the session-wide percentage at 30%, reactive session). The theoretical reasons for the
manipulations are described in detail within Braver et al. (2021). We exploit the robust congruency effects
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elicited by the baseline session in our analyses, by using this session in particular to evaluate test–retest
reliability of our univariate fMRI measures (see Section 2.5).

2.3 Image acquisition and preprocessing

The fMRI data were acquired with a 3T Siemens Prisma (32 channel head-coil; CMRR multiband sequence,
factor = 4; 2.4 mm isotropic voxel, with 1.2 s TR, no GRAPPA, ipat = 0), then subjected to standard
fMRIPrep pipelines (Esteban et al., 2020, 2018). As part of the preprocessing pipeline, data were projected
into surface space (fsLR8K) once, were then smoothed (with Gaussian kernel of FWHM = 4 mm), and were
divisively normalized to reflect percent signal change relative to the timeseries mean. These pipelines were
implemented in a Singularity container (Kurtzer et al., 2017) with additional custom scripts used to implement
file management. More details on the preprocessing and pipeline are available at https://osf.io/6p3en/
and (Etzel et al., 2022). Container scripts are available at https://hub.docker.com/u/ccplabwustl.

2.4 Timeseries models

To generate single-trial estimates of the fMRI activation, we summarized the minimally preprocessed fMRI
timeseries using a simple “selective averaging” model. Specifically, we averaged together the second, third,
and fourth observations (i.e., time-points in TR) following the onset of a trial (i.e., corresponding to a
window of 2.4–4.8 s post-stimulus onset). Prior to selective averaging, we detrended the timeseries for a
given participant and repetition with 5-th order polynomials per run (with order selected by 1+floor(𝐷/150),
where 𝐷 is the duration in seconds of a run), as well as with 6 motion parameters concatenated in time over
both runs. This detrending was performed via 3dDeconvolve in AFNI. Additionally, trials that had a TR
within the averaged window with frame-wise displacement > 0.9 mm were censored.

Although there are several other methods for obtaining trial-level fMRI observations (Mumford et al., 2012),
we opted for this simple selective averaging model for two reasons. First, the selective averaging model can
be extended easily within future work to the other tasks within the DMCC dataset. These tasks have relatively
complex, multi-event trial structures that would be difficult to model with fixed-shape regressors. Second,
compared to other GLM-based approaches that simultaneously model all trials with individual regressors
(i.e., a “least-squares–all” approach; Mumford et al., 2012), the precision of the single-trial estimates in the
selective averaging method is not diminished by collinearity within the design matrix. Thus, relative to least-
squares–all, the single-trial estimates furnished by selective averaging may be more biased by neighboring
trials’ activity; however, given that trial-types were well-randomized within each run, we assumed that such
bias was likely minimal and less costly in terms of imprecision than using a method such as least-squares–all.
(This assumption was also supported by pilot analyses conducted on a subset of the data.)

2.5 Spatial brain activity models

Here, we provide an overview of the univariate and multivariate modeling approaches we used. For a more
comprehensive mathematical description, please refer to the Supplemental Method.

Once we divided the single-trial activation estimates into Schaefer atlas regions (Schaefer et al., 2018), we
centered these estimates (see Supplemental Method Section 10.2.1), then used two different methods of
summarizing the spatial patterns within each region: a univariate model and a multivariate model. Each of
these models aggregates information that is spatially distributed across all vertices within a given region.
Thus, we refer to them as “spatial models” (equivalently, they could be referred to as “spatial filters”). In
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particular, these spatial models perform linear dimensionality reduction, in which the spatial pattern on each
trial is projected onto a single dimension, yielding a single summary score, per trial and region. In other
words, both types of models compute a weighted sum across vertices:

score𝑡 =
𝑉∑︁
𝑣=1

activ𝑣𝑡 · weight𝑣 (1)

Here, activ𝑣𝑡 is the activation pattern estimates furnished by the timeseries model on trial 𝑡, in vertex 𝑣 out
of 𝑉 total vertices within the region of interest.

The key difference between these models lies in the nature of the weights. In the univariate spatial model,
the weights are all positive and equal across vertices:

weight𝑣 = 1/𝑉 (2)

This projection amounts to estimating the spatial mean.

In the multivariate spatial model, the weights are estimated such that they optimize a criterion. We used
linear discriminant analysis (LDA; Fisher, 1936; Hastie et al., 2009, which finds the weights that maximize,
within the projection scores, the variability between the condition means relative to the variability within the
conditions. In other words, weights are learned that suppress trial-level variability relative to trial-averaged
variability in the scores. Notably, this criterion aligns well with our goal of obtaining a favorable trial/subject
variability ratio. Such weights are provided by the linear discriminant function within LDA (Equation 6 in
Supplemental Method). Here, we simply write this function for a single vertex 𝑣:

weight𝑣 = (mean incon activ𝑣 − mean congr activ𝑣) · scaling factor𝑣 (3)

where mean incon activ and mean congr activ are the mean levels of activity for incongruent and congruent
conditions, respectively, averaged over trials. (See Equation 6 in the Supplemental Method for the full
expression.) The scaling factor is a critical part of this operation, in that it varies across vertices, incorporating
information regarding not only the amount of trial-level variability in each vertex, but also how this variability
co-varies with each of the other vertices within the region. In this way, these vertex-wise scaling factors
enable LDA to squash unreliable spatial dimensions and expand reliable ones.

2.5.1 Implementation of LDA

Despite these similarities between models, additional steps were necessary to curb overfitting within the
multivariate models. We fitted the multivariate models in leave-one-session out cross-validation, in which
the weights for a given “testing” session were estimated using concatenated data from the other two “training”
sessions. To minimize bias in decoding results caused by class imbalance and other confounding factors, we
used a stratified random undersampling algorithm to generate the training set for LDA (see Supplemental
Method Section 10.2.2). We implemented LDA using the rda() function from the R package klaR, with
parameters fixed at gamma = 0.25, lambda = 1, providing a moderate amount of regularization (Weihs et al.,
2005). The obtained weights were then multiplied by the trial-level data from the held-out test session to
generate the trial-specific scores for test–retest reliability analysis.
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2.6 Reliability models

After the fMRI activity patterns within each parcel were summarized into univariate and multivariate
scores, or projections, per trial, the test-retest reliability in these projections was estimated. We compared
two different methods of estimating test–retest reliability: the Intraclass Correlation, which is a standard
“summary statistic” method, and correlations derived from hierarchical Bayesian models. We refer to both
of these methods generally as “reliability models”.

We fitted both summary statistic and hierarchical Bayesian reliability models similarly and independently for
each of the 400 Schaefer-atlas brain regions, and each type of spatial model (univariate, multivariate). This
enables us to compare the independent and interactive effects of spatial and reliability modeling methods,
similar to decomposing an effect into main effects and interactions.

We scope our test–retest reliability analyses, however, exclusively on projections from the baseline session.
This decision was made to streamline reporting of our results. There is strong reason to expect that
individual differences in the Stroop effect were maximized within this session (see Section 2.2; Braver et al.,
2021). Consequently, this decision likely works against our key hypothesis that multivariate models improve
properties of test–retest reliability relative to univariate models. This is because the test–retest reliability
of multivariate projections is not only dependent on baseline-session data, but also data from the other
two sessions (proactive and reactive), as those sessions constituted the training set (in cross-session cross-
validation). By contrast, univariate projections within the baseline session do not have this dependency.
In other words, focusing on baseline-session data not only allows us to simplify our results, but it gives
univariate models their “best-shot” in comparison against multivariate models. Thus, any improvements
we see in properties of test–retest reliability due to multivariate models provides strong evidence for their
superiority.

2.6.1 Summary-statistic method

The Intraclass Correlation Coefficient (ICC) is a standard way to measure reliability. In particular, the most
common form quantifies the consistency instead of absolute agreement between two repeated measures on
a same group of participants (ICC(3, 1) in Shrout and Fleiss, 1979).

Averaging the trial-level activation estimates over trials, we formed one summary score per subject, repetition,
and condition (incongruent, congruent). The contrast of interest is the Stroop effect, that is, the difference
between means of incongruent versus congruent trials. In this setting, ICC(3, 1) of the Stroop effect is
defined as the Pearson correlation coefficient in participants’ Stroop effects across repetitions (Supplemental
Method 10.3.1).

2.6.2 Hierarchical Bayesian Analysis

In the hierarchical Bayesian method of estimating reliability, projections are modeled at the trial level,
and the amount of variance at different levels — such as across trials versus across subjects — is separately
captured. Unlike intra-class correlation, a hierarchical Bayesian decomposition enables individual-difference
correlations to be estimated in a manner that accounts for the impacts of variance at each level.

The structure of our hierarchical models generally followed prior work (Chen et al., 2021). Although we
provide a simplified description here, please refer to the Supplemental Method for details. To provide
robustness to outliers, we assumed that the output of the spatial models (score in Equation 1) were generated
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from student-t distributions. For readers familiar with Wilkinson and Rogers (1973) notation (e.g., lme4
syntax), a key part of our model can roughly be expressed as

score ∼ congruency ∗ repetition + (congruency ∗ repetition | participant)

in which the non-parenthetical terms on the right-hand side denote the population (“fixed”) effects, while
parenthetical terms denote individual-level (“random”) effects. The pivotal quantity of test–retest reliability
is contained within the parameters associated with the individual-level effects. The above expression,
however, only reflects a small portion of the hierarchical models we fitted. For full descriptions, please refer
to Supplemental Method 10.3.2 and 10.4.

The hierarchical models were implemented using the R package brms with noninformative or weakly-
informative hyperpriors automatically selected by brms (Bürkner, 2017). Parameters were estimated through
Markov Chain Monte Carlo (MCMC) with four chains with 2000 iterations each (including 1000 warm-up
iterations). The training time for each model (i.e., for univariate or multivariate contrasts of a single parcel
in the baseline session) was approximately an hour, running on four threads on an Intel Xeon E5-2670 CPU
(2.60 GHz).

To ensure that we used models well-fitted to our dataset, we assessed four models of varying complexity
and compared them in estimates of their ability to predict new data points. These models varied in terms
of the complexity of the covariance structures in the location and scale parameters of the 𝑡 distributions
(Supplemental Methods 10.4). Due to computational constraints, this comparison was conducted in a subset
of 32 parcels within the 400-parcel Schaefer atlas. These parcel locations were based on prior work that
demonstrated a core set of regions associated with demands for cognitive control (Assem et al., 2020, within
the Glasser atlas), and were independently selected in prior work (see Braver et al., 2021 Supplemental
Materials https://osf.io/pa9hj for identifying corresponding regions within the Schaefer atlas). Expected
log-predictive density with Bayesian leave-one-out cross-validation (ELPD LOO) was computed by brms
through the loo package (Vehtari et al., 2024). A model of intermediate complexity was supported by this
criteria in all 32 parcels for both univariate and multivariate approaches (Reduced Model 2; Supplemental
Method 10.4.2, Supplemental Results). Another model fit statistic, widely applicable information criterion
(WAIC), also supported this model (not reported). Therefore, we then separately fitted this model to data
from all 400 parcels, selecting it as the basis of analyses reported in the Results.
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3 Results

3.1 Pronounced univariate activation in fronto-parietal networks at the population level

−6 −3 0 3 6
t+

Figure 2: Population-level univariate activation to Stroop task demands. Per brain parcel, 𝑡+ statistics
show the sign and magnitude of univariate activation. These statistics were computed by estimating the
spatially averaged difference of BOLD activity estimates on incongruent versus congruent trials, then
dividing this estimate by its standard error, estimated through a hierarchical Bayesian model. Regions of
interest, which are outlined in white borders, were defined using a larger portion of the Dual Mechanisms of
Cognitive Control dataset.

To provide a basis for assessing reliability of cognitive control-related BOLD responses at the level of
individuals, we first characterized BOLD responses that were co-localized across individuals within particular
brain regions. Namely, we assessed which cortical regions (parcels within the Schaefer 400 17-Network atlas)
increase BOLD activity on more demanding incongruent Stroop trials, relative to less demanding congruent
trials, generally across subjects, as such changes in activity are expected to be exhibited by a region involved
in cognitive control. This contrast was implemented by first spatially averaging the BOLD signals across
vertices within each parcel separately on each trial, then estimating the population-level change in activation
within a hierarchical Bayesian model (Reduced model 2 in Supplemental Method 10.4.2). Hereafter, we refer
to this contrast as a “univariate activation” contrast, as it relies on a spatially univariate (uniform) averaging
of signals from a given region. Figure 2 displays the results of this analysis.

To illustrate the continuous magnitude and sign of the change in activation across parcels, we depict the effect
size with a statistic we refer to as 𝑡+, which incorporates both the mean level and amount of uncertainty of
activation change (note, however, that although similar in form, the definition of 𝑡+ does not straightforwardly
translate to the frequentist’s t-statistic). Using this contrast, prominent increases in activation were observed
in frontal and parietal cortex, particularly within the left hemisphere (Figure 2), in a pattern that is strongly
consistent with extensive prior findings (e.g., Assem et al., 2020; MacDonald et al., 2000).

To complement this continuous measure, we also employed a dichotomous measure, by using “regions of
interest” (ROIs) based on the larger Dual Mechanisms of Cognitive Control dataset from which this subset
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of data was taken. Specifically, in Braver et al. (2021) a set of 35 parcels were identified from a larger
sample of participants (N = 80) that showed consistent activation according to cognitive control demands,
and which included the Stroop effect contrast, but also parallel contrasts across three additional tasks studied
within that report. Compared to using the present sample and task alone, defining ROIs on the basis of
the larger Dual Mechanisms dataset likely yields more accurate definitions of core brain regions associated
with cognitive control across multiple tasks. These ROIs included brain areas classically associated with
cognitive control, such as mid-lateral prefrontal and posterior parietal cortices (Figure 2, white borders), and
which most prominently belonged to the fronto-parietal control network.

In subsequent analyses, we will use both of these complementary statistics (𝑡+, ROI definitions) to illustrate
relations between univariate activation at the population level, and properties of other neural measures at the
individual level, such as test–retest reliability.

3.2 Hierarchical modeling reveals highly reliable estimates at the individual level

Having established that univariate contrasts reveal highly robust activity changes on average across individ-
uals, we next asked whether these same univariate contrasts are also highly consistent within each individual,
across repeated testing sessions, which in our sample were separated by several months to years of intervening
time. In other words, what is the test–retest reliability of fMRI activation to Stroop-task demands?

To provide a comprehensive assessment of test–retest reliability, we used two different approaches for
estimating reliability and compared their results. The first approach was via a widely used method, the
intra-class correlation, which relies on a two-stage procedure in which “summary statistics” are computed,
then correlations in these statistics are subsequently estimated. The second was via a hierarchical Bayesian
modeling approach. Using the same models we fitted to estimate the population-level effects separately in
each brain parcel (i.e., in Figure 2), we also estimated the posterior distribution of test–retest correlations
within individuals. Following prior work Chen et al. (2021), to summarize these posterior correlations with
a single value, we used the maximum a posteriori probability (MAP) estimate (i.e., the single correlation
value at which the density of the posterior probability is maximal).

Figure 3, top, depicts the results of both of these approaches, as applied to individuals’ univariate activation
contrasts. When estimated through a summary statistic approach, test–retest reliability is quite modest,
reaching maximum values of only 𝑟 ∼ 0.5, primarily within our ROIs (white borders), which tended
to contain strong population-level effects. The results from the hierarchical Bayesian model were quite
different. As revealed by these models, test–retest reliability was often close to maximum, again prominently
within ROIs, but also within a much broader set of regions. In fact, the number of regions with conventionally
“high” reliability (𝑟 > 0.7) dramatically increased from 3 to 186, indicating that nearly 50% of the brain
parcels were highly reliable.

By directly contrasting the summary-statistic and hierarchical correlations within each parcel, the differences
between the estimates can be explicitly illustrated. Two findings here are notable. First, the change in
reliability was most prominent for regions in which the intra-class correlations was already distant from zero.
For regions with positive intra-class correlations, hierarchical modeling dramatically improved reliability,
while for regions with negative intra-class correlations, hierarchical modeling reduced reliability. For
regions with near-zero intra-class correlations, little change was revealed. This finding is consistent with
prior theoretical and empirical demonstrations that, compared to hierarchical Bayesian models, intra-class
correlation multiplicatively underestimates test–retest reliability (Chen et al., 2021). Second, improvements
in reliability revealed by hierarchical modeling also tended to be particularly large in regions with strong
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test-retest reliability estimates in univariate Stroop contrasts

Figure 3: Test–retest reliability estimates in univariate Stroop contrasts. Surface plots at top, Test–
retest reliability (TRR) correlation coefficients (r) estimated through “summary statistic” (upper row) or
hierarchical Bayesian models (bottom row). To summarize the posterior correlation distributions in the
hierarchical models, we used the maximum a posteriori (MAP) estimate. White borders illustrate regions of
interest (ROIs) identified in a prior report (Braver et al., 2021). Bottom left, Histogram of the distribution
of these test–retest correlations across all cortical parcels (hierarchical Bayesian models or HBM, pink;
summary statistic, sum. stat.). Bottom middle, Histogram of the difference in test–retest correlations
between hierarchical Bayes MAP estimates minus summary-statistic estimates, over all cortical parcels and
also in ROIs. Prior to subtraction, correlation coefficients were z-transformed (i.e., inverse hyperbolic
tangent). Bottom right, Scatterplot of the relation between test–retest correlation estimates from summary
statistic models (x axis) and hierarchical Bayesian models (y axis), over all cortical parcels (points). The
color scale illustrates the sign and magnitude of the population-level univariate Stroop effect contrast (𝑡+,
defined in Figure 2). Dotted lines illustrate x and y intercepts, as well as the unity line.
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test-retest reliability estimates in multivariate Stroop contrasts

Figure 4: Test–retest reliability estimates in multivariate Stroop contrasts. All plots are analogous to
those in Figure 3.
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population-level effects, that is, fronto-parietal regions which were consistently activated to Stroop-task
demands across subjects. Consequently, the same experimental contrasts used to identify regions that are
involved in cognitive control, generally within the population, can also be used to individuate people, in
terms of the extent to which their neural responses within these regions were modulated by the task (e.g.,
Braver et al., 2010).

We then sought to characterize reliability of an alternative contrast, of multivariate activation. Similar to the
univariate activation contrast, the multivariate contrast we used implemented a linear transform of spatial
patterns of brain activity, in which activity evoked by easier congruent trials was subtracted from activity
evoked by more difficult incongruent trials. But instead of a uniform weighting of signals within a region
of interest, the multivariate contrast relied on an optimal estimation of the weighting vector (see Method).
The reliability properties of such a contrast have not yet been established. In general, findings were quite
similar to univariate contrasts: reliability was dramatically improved by hierarchical modeling, and the most
reliable estimates were revealed in many of the same regions (Figure 4). In several regions, however, the
gains revealed by hierarchical modeling were not quite as extreme as observed univariate contrasts. We will
return to this observation in the Discussion.

Collectively, these findings demonstrate that, both univariate and multivariate fMRI contrasts can be highly
consistent within individual, at least when basing the estimation on the most likely (MAP) estimates from
hierarchical models.

3.3 Imprecision limits interpretation of individuals’ univariate activation estimates

The results summarized in Figure 3 reflect the single most likely test–retest correlation value per brain region,
as provided by the MAP estimator. While a convenient summary, this estimator conveys no information
about how much more likely the MAP estimates are, relative to other outcomes in which reliability is lower.
For instance, if the model assigns almost as much probability to a pattern of results in which reliability is
considerably lower than in Figure 3, the prior results should not be well trusted. Evaluating these possibilities
requires assessing the precision or uncertainty in the test–retest reliability estimates. Such an assessment
is naturally supported within a Bayesian modeling framework, through analysis of the tails of the posterior
distribution of test–retest correlations.

We found that, even as the single most likely test–retest reliability estimates of many regions approached a
maximal value of one, in these same regions, the hierarchical model also assigned relatively high probabilities
to correlation values that were quite low. In many cases, correlation values below zero were assigned a non-
negligible probability. We depict this uncertainty in Figure 5 (upper), in which the mean posterior test–retest
correlation estimates (dark to hot hues) are thresholded based on their (im)precision (fully saturated to
unsaturated grey). That is, the only regions displayed in fully saturated colors are those with 95% of their
posterior correlation density or more located above zero. This graphic therefore combines information about
the central tendency (dark to hot hues) and lower tail (saturation) of the posterior (Taylor et al., 2023).
From this view, only a handful of parcels now have a combination of both high reliability (> 0.7), and high
certainty in the reliability estimate, a finding which converges with prior work (Chen et al., 2021).

In analyses focused on individual difference questions, observing such a high degree of uncertainty in
individual-level variables would severely complicate inferences, weakening conclusions drawn about any
relations observed.
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Figure 5: Test–retest reliability correlations thresholded by certainty. All correlations were estimated
within hierarchical Bayesian models, as the mean of the posterior distribution over test–retest correlation
values. The black-to-hot dimension in the colormap indicates the mean posterior test–retest correlation for
univariate (top) and multivariate (bottom) contrasts. In contrast to Figure 3, we use the mean to summarize
the posterior here, as the mean is more sensitive to the full distribution of the posterior, and so more strongly
reflects behavior of the tails, than does the MAP estimate. The saturated-to-unsaturated dimension in the
color-map reflects the lower bound of the test–retest correlation estimate (95th percentile). A soft threshold
is applied to the color-map, so that only parcels that were estimated to have positive reliability with high
certainty are displayed with full saturation (more colorful or deeper black), while those with increasingly
negative lower bounds are displayed with quadratically decreasing saturation (more grey; Taylor et al., 2023).
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3.4 A combined hierarchical and multivariate approach yields highly reliable, and highly
precise, measures of individuals

Are multivariate contrasts subject to similar amount of imprecision as univariate contrasts? Given that
multivariate contrasts optimize different criteria than univariate contrasts (see Method), we suspected they
may yield more precise individual-level measures. A hint to this question is already provided by Figure
5, bottom, in which the reliability of multivariate contrasts are thresholded by their lower-bound tail, in
an identical manner to univariate contrasts (top). Compared to univariate contrasts, although the central
tendencies of multivariate contrast reliability in several regions is somewhat numerically lower, over twice
as many regions (80 versus 39) have a high certainty (> 95% probability) of positive reliability. Of note,
this category also included over half (19/35) of the ROIs. For instance, several regions in lateral PFC
(particularly right hemisphere), posterior parietal cortex, and superior frontal cortex are only identified as
highly certain to have positive reliability when the multivariate contrast is used. In Table 1, we list the 40
parcels with the highest (most positive) lower-bound estimates of test–retest reliability. Most of these parcels
(26/40) are located within two fronto-parietal networks, Dorsal Attention A and Control A.

To provide a more comprehensive comparison, however, we calculated the precision of test–retest reliability
separately in univariate and multivariate contrasts, then contrasted their magnitudes within each brain parcel.
We used precision, that is, the reciprocal of the standard deviation of the test–retest correlation posterior, so
that higher values indicate more precise estimates. (To ensure a sensitive comparison across a large range
of values, we logarithmically transformed SDs prior to taking the reciprocal.) As illustrated in Figure 6,
multivariate contrasts generally led to more precise individual-level contrast estimates.

We can now consider the joint impact of hierarchical and multivariate approaches on reliability of individual-
level variables. For both univariate and multivariate contrasts, hierarchical modeling revealed that the central
tendency of the posterior test–retest reliability distribution are often much greater than expected based on
less-accurate summary statistic estimates (shown for multivariate contrasts in Figure 7 left panel, y axis).
Yet relative to univariate contrasts, multivariate contrasts more strongly pulled the tails of the posterior
distributions closer to their central tendencies (Figure 7 left panel, x axis). This not only increased the
certainty in the plausible range of the parameter estimates, but also made these model results easier to
summarize and interpret with point estimates. Such changes were relatively widespread, in that over 50%
of parcels (233/400) show both improved reliability compared to summary statistic modeling (Figure 7,
and improved certainty in individual-level estimates relative to univariate (Figure 7, left panel, upper right
quadrant). Thus, this combination of methods can lead to a complement of benefits that has eluded prior
work in this area: both highly reliable individual-level estimates, as well as highly certain identification of
individual-difference associations.

3.5 Multivariate contrasts achieve high individual-level precision by squashing trial-level
variability

How do multivariate contrasts improve the certainty of individual-level estimates? We illustrate a means by
which this improvement is achieved. Theoretical work has demonstrated that a pivotal quantity for individual
difference analyses is the ratio of trial-level variability to individual-level variability (Chen et al., 2021; Figure
1), which we refer to here as the “variability ratio”. When trial-level variability greatly outweighs individual-
level variability (a high variability ratio), uncertainty in correlations among individual-level variables is
maximized. Conversely, if trial-level variability is reduced, for example, by obtaining measurements less
susceptible to such noise, then certainty in correlations will increase. Thus, relative to univariate contrasts,
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precision of test-retest reliability estimates: univariate vs. multivariate Stroop contrasts

Figure 6: Precision of test–retest reliability estimates in univariate versus multivariate contrasts. We
defined the precision of test–retest reliability correlations as the reciprocal of the log-transformed standard
deviation across samples from the posterior distribution. Higher values indicate less variable (more certain)
estimates of test–retest correlations. Aside from the difference in the statistic of interest, all plots are
analogous to those in Figure 3.
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Figure 7: Joint impact of multivariate contrasts and hierarchical Bayesian modeling on individual-
level correlation estimates. Left, Scatterplot of the joint benefits of multivariate and hierarchical modeling.
The x axis depicts the increase in test–retest correlation precision associated with using a multivariate
(multivar.) versus univariate (univar.) contrast (x axis). The y axis depicts results from multivariate
contrasts only: namely, the increase in test–retest correlation strength revealed by hierarchical (maximum a
posteriori estimate, or MAP) versus summary-statistic models (intra-class correlation coefficients, or ICC).
“N=(#)” indicates the number of parcels in each quadrant. The color-map illustrates the population-level
univariate activation estimate associated with each brain parcel (see Figure 3). Asterisks indicate locations
of example parcels whose posterior densities are displayed in the right panels. Right, Example posterior
densities of test–retest correlation values. Dotted vertical lines indicate values of summary statistic reliability
estimates. These four regions were chosen as representative examples of the posterior densities within each
of the four quadrants in the left panel of this figure (marked by asterisks). LH ContA IPS 2 is located within
rostral aspect of left intraparietal lobule, RH ContA PFCl 3 within rostral right mid-lateral PFC, RH LimbicB
OFC 3 within right orbitofrontal cortex, and RH SomMotB S2 8 near right somatomotor and supramarginal
gyri.
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Figure 8: See following page for caption.
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Figure 8: Increased precision through reduced susceptibility to trial-level variability. Left, top, Analysis
of principal components of trial-level variability and their relation to univariate and multivariate contrasts
in an example region. Principal component analysis was used to identify the spectrum of components of
trial-level ”noise”, that is, the set of dimensions along which this PFC region fluctuates over trials, within
each task condition. Each dimension (x axis) corresponds to a particular spatial pattern over vertices within
the region, while the black points (left y axis) display how much the region fluctuated along this dimension
over trials (in units of standard deviation, or square rooted eigenvalues), on average over subjects. Most
variability is concentrated in the first dimension, indicating that trial-level variability was overwhelmingly low
dimensional. The blue dots and lines (right y axis) illustrate how these dimensions of trial-level fluctuations
are aligned to the univariate (dark blue, wunivar.) and multivariate (light blue, wmultiv.) weight vectors. The
univariate weight vector is primarily aligned to the principal dimension of trial-level variability, whereas the
multivariate weight vectors are least aligned to this dimension, and instead more heavily weight intermediate
dimensions. For all points, error bars illustrate boostrapped 95% confidence intervals of between-subject
variability in means. Left, bottom, In most brain parcels and subjects we measured, multivariate weight
vectors were susceptible to less total trial-level variability than univariate weight vectors. This susceptibility
was estimated separately in each parcel and subject by computing the log ratio of the total amount of trial-
level SD in the direction of univariate versus multivariate weight vectors. Positive values indicate univariate
weight vectors were aligned to a greater total amount of trial-level variability than multivariate weight
vectors. Right, Improvements in trial/subject variability ratio translated into improvements in certainty
of individual-level correlations. The x axis represents log(univariate variability ratio) – log(multivariate
variability ratio), while the y axis represents log(univariate SD(TRR)) – log(multivariate SD(TRR)). In other
words, positive values indicate that, relative to univariate contrasts, multivariate contrasts either led to a
smaller and thus more favorable trial/subject variability ratio (x axis), or to a less uncertain and thus more
interpretable test–retest correlation (y axis). Note that the values and interpretation of the y axis here are
equivalent to that of the x axis in Figure 7. For clarity in this figure, however, we relabel this figure’s y axis
to match the interpretation of its x axis, wherein higher values of the underlying statistic (SD, trial/subject
variability ratio) are less favorable for individual differences analyses.

multivariate contrasts may improve certainty by finding a dimension that is less susceptible to trial-level
noise than the uniform dimension, to which univariate contrasts are bound (Figure 1).

This hypothesis makes two assumptions. In particular, the uniform dimension should indeed be highly
susceptible to trial-level variability. Additionally, the dimension used by the multivariate contrast should be
less susceptible to trial-level variability. Are these borne out in our data? Consider an example region in left
dorsal prefrontal cortex, which consists of 58 vertices. In this region, BOLD activity can fluctuate across
trials in 58 different ways (i.e., along 58 different dimensions). Identifying and ranking these dimensions
by the amount of across-trial variability that occur along them, we can see that a majority of the trial-level
variability is concentrated in only one or two dimensions (Figure 8, left top, black points and lines). This
identification and ranking also allows us to assess how the spectrum of trial-level variability relates to the
univariate and multivariate contrasts. We assessed how the univariate and multivariate weight vectors,
which are spatial patterns that define how information is pooled across vertices within a region, are aligned
to each of these ranked dimensions of trial-level variability. Indeed, the univariate weight vector is strongly
aligned to the largest dimension of trial-level noise (Figure 8, left top, dark blue). The multivariate weight
vector, however, is least aligned to this high-variability dimension, and instead weights other intermediate
dimensions more strongly (light blue). These patterns can be summarized within each parcel by computing
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the total amount of trial-level variability in the direction of each contrast’s weight vector (i.e., by weighting
the SD of each dimension by its alignment to univariate or multivariate contrasts, then summing across
dimensions). Performing this summarization in every parcel of every subject, we can see that in nearly all
of them, univariate contrasts are susceptible to a greater amount of trial-level variability than multivariate
contrasts. (Figure 8, left bottom). These findings indicate that the trial-level variability is of low spatial
frequency within our brain parcels (i.e., predominantly uniform across vertices), and that only multivariate
contrasts can exploit this uniformity to find alternative, higher spatial frequency dimensions that are more
robust to trial-level variability.

Having demonstrated the difference in susceptibility to trial-level variability, we then sought to link changes
in the trial/subject variability ratio to changes in the certainty of test–retest correlations. Using hierarchical
models fitted in each brain parcel, we first computed the trial versus subject variability ratio separately for uni-
variate and multivariate contrasts. Next, to show how multivariate contrasts impact this ratio, we subtracted
these ratios between contrast types (after a log transform) to form a change statistic, which is positive when
univariate contrasts yielded a higher trial/subject variability ratio, and negative when multivariate contrasts
yielded a higher ratio (Figure 8, bottom, x-axis). Following similar logic, we computed a change statistic for
the standard deviation of test–retest correlation, such that positive values indicate greater imprecision with
univariate contrasts, while lower values indicate greater imprecision with multivariate contrasts (Figure 8,
bottom, y-axis). Most brain regions fall in the all-positive quadrant, indicating that multivariate contrasts
made both ratios more favorable for individual difference-focused analyses. Importantly, though, the change
in variability ratio was also strongly positively correlated with the change in precision. This relation is
consistent with improvements of correlation precision being driven by suppression of trial-level variability
in the measures.
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Univariate TRR Multivariate TRR

Parcel (Schaefer 400-17) 𝑡+ MAP 5%ile ICC MAP 5%ile ICC

LH DorsAttnA SPL 3 4.58 0.97 0.46 0.61 0.94 0.75 0.87
RH DorsAttnA SPL 4 2.23 0.99 0.67 0.79 0.97 0.74 0.75
LH ContA IPS 5* 4.65 0.98 0.46 0.54 0.99 0.67 0.71
LH VisCent ExStr 11 1.82 0.68 -0.16 0.35 0.95 0.63 0.67
LH DorsAttnA SPL 6 0.60 0.95 -0.51 0.36 0.98 0.62 0.78

RH DorsAttnA SPL 7 0.43 0.95 0.23 0.47 0.96 0.59 0.66
LH DorsAttnA SPL 7 1.20 0.68 -0.66 0.14 0.99 0.59 0.67
LH DorsAttnB PrCv 1* 4.02 0.98 0.55 0.59 0.87 0.55 0.65
LH DorsAttnA SPL 1 2.87 0.97 0.33 0.37 0.86 0.52 0.70
LH DorsAttnA SPL 2 2.02 0.78 -0.41 0.34 0.87 0.51 0.71

RH DorsAttnA SPL 5 -0.31 0.77 -0.18 0.48 0.99 0.51 0.65
RH DorsAttnA SPL 2 2.91 0.97 0.52 0.58 0.88 0.50 0.67
LH DorsAttnA SPL 4* 4.76 0.99 0.76 0.71 0.85 0.49 0.58
RH ContA IPS 1 2.81 0.91 -0.26 0.42 0.87 0.49 0.64
LH DorsAttnA ParOcc 1 -2.69 -0.86 -0.93 -0.24 0.98 0.48 0.58

LH DefaultB IPL 1 -2.22 0.49 -0.74 -0.11 0.93 0.47 0.65
LH DefaultB PFCl 2* 4.76 0.88 -0.55 0.29 0.98 0.47 0.58
LH ContA IPS 4* 4.94 0.98 0.49 0.62 0.91 0.46 0.64
RH ContA PFCl 3* 3.80 0.69 -0.57 0.36 0.98 0.46 0.53
LH ContA Temp 1 -0.69 0.94 -0.41 0.21 0.87 0.46 0.60

LH DorsAttnA TempOcc 4 4.06 0.92 -0.76 0.26 0.82 0.45 0.62
LH DorsAttnA ParOcc 2 1.12 0.99 0.61 0.59 0.96 0.44 0.48
RH DefaultB Temp 2 3.04 0.07 -0.76 0.07 0.93 0.43 0.50
RH DorsAttnA TempOcc 2 2.11 0.98 0.08 0.49 0.98 0.42 0.48
LH VisCent ExStr 10 -1.61 0.74 -0.88 0.15 0.98 0.41 0.26

LH DorsAttnB PostC 5 -0.03 0.95 -0.08 0.51 0.95 0.41 0.47
LH SalVentAttnA ParOper 1 -3.18 0.85 -0.67 0.16 0.95 0.40 0.60
RH ContA IPS 4 2.67 0.94 -0.17 0.62 0.84 0.40 0.50
LH DorsAttnB PostC 3 0.75 0.97 0.28 0.57 0.84 0.39 0.61
LH ContA PFCd 1 -2.26 0.88 -0.74 0.08 0.93 0.34 0.53

RH SalVentAttnA ParOper 1 -3.35 0.56 -0.78 0.03 0.94 0.34 0.55
RH DefaultC IPL 1 -3.38 0.83 -0.31 0.33 0.96 0.33 0.45
LH DorsAttnB FEF 2* 1.22 0.92 -0.71 0.32 0.93 0.33 0.46
RH ContB IPL 4* 4.34 0.91 -0.18 0.55 0.86 0.31 0.46
RH DorsAttnA SPL 8 -2.83 -0.63 -0.89 -0.07 0.97 0.29 0.50

LH DorsAttnA SPL 5 1.77 0.95 0.06 0.37 0.95 0.28 0.48
RH ContC pCun 1 -2.64 0.98 0.48 0.63 0.98 0.27 0.51
LH ContA IPS 3* 5.95 0.93 0.18 0.40 0.68 0.26 0.54
LH ContA PFCl 1* 4.33 0.98 0.37 0.56 0.80 0.25 0.43
LH ContA IPS 1* 3.41 0.99 0.57 0.59 0.69 0.25 0.53

Table 1: Regions of interest and associated test–retest reliability statistics. Displayed are key statistics from Schaefer-atlas
parcels that exhibited the strongest test–retest reliability in the multivariate Stroop activation contrast. Asterisks by parcel names
indicate regions of interest associated with cognitive control demands, defined in a prior report (Braver et al., 2021; 11 out of 35
also exhibit strong test–retest reliability). The strength of population-level univariate activation in each region summarized in the
statistic 𝑡+ (descending order). Test–retest reliability in univariate activation contrasts (Univariate TRR) and in multivariate contrasts
(Multivariate TRR) are also displayed. The maximum a posteriori estimate (MAP) indicates the central tendency of posterior TRR
correlations (i.e., the most likely point estimate), while the 5th percentile of the posterior (5%ile) indicates a lower-bound on the
estimate (i.e., the uncertainty in the estimate). Rows are sorted by this statistic. Intra-class correlation coefficient estimates (ICC)
are also displayed.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2024.04.24.591032doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.24.591032
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Discussion

We investigated whether a current, widely-used psychological test of cognitive control can yield reliable fMRI
measures of individual differences over repeated testing sessions. In particular, we focused on characterizing
the way in which two contemporary modeling frameworks, Hierarchical Bayesian modeling and MVPA,
jointly impact the derived fMRI measures and their associated estimates of test-retest reliability. We
found that their combination clearly afforded complementary benefits for estimating individual differences.
Hierarchical Bayesian modeling generally led to higher estimates of test-retest reliability than the more
traditional “summary-statistic” framework, but in most cases, these estimates were highly uncertain, reflecting
strong trial-to-trial variability in the derived measure. This variability, however, was squashed by the
application of MVPA, which in turn substantially increased the certainty of the Bayesian estimate of reliability.
Therefore, by combining these contemporary modeling frameworks, widely-used task fMRI designs can be
used to produce not only highly reliable, but also highly precise measures of individual differences.

Our findings caution against sweeping claims of the inadequacy of using task-based fMRI to study individual
differences. For example, in one recent study, authors analyzed several extant datasets of common task-based
fMRI designs, and reported that the test-retest reliability of univariate activation contrasts in key regions of
interest were consistently low (Elliott et al., 2020). These results were interpreted as evidence that “the task-
fMRI literature generally has low reliability” and conclude that such task-fMRI measures are “not currently
suitable for ... individual-differences research”. Our findings undermine this conclusion, as we present
evidence that one of the most commonly used task designs in fMRI, the color-word Stroop task, can indeed
elicit highly reliable fMRI measures. This discrepancy between findings can be accounted for, perhaps
entirely, by our use of hierarchical modeling methods to estimate test-retest reliability, as opposed to their
use of summary-statistic methods. When trial-level noise is high — which is invariably the case for fMRI
and many behavioral measures of cognition — summary-statistic estimates of reliability are most inaccurate
(Figure 1; Chen et al., 2021). In such scenarios, when investigators fail to grapple with these complexities
within their approach to data analysis, the risk of faulty and overly pessimistic inferences increases. Our
findings join a growing body of work in illustrating the usefulness of hierarchical Bayesian analysis as a
principled way of approaching this issue, as it enables complex multi-level variance structures to be estimated
and decomposed (Haines et al., 2020; Chen et al., 2021; Rouder et al., 2023; Rouder and Haaf, 2019; Snijder
et al., 2023). Nevertheless, to our knowledge, only one other study has extended this approach to fMRI
data (Chen et al., 2021), thus the benefits of this approach for fMRI data analysis are only beginning to be
explored.

In addition, our findings mark an advance from prior modeling work on individual differences in that we
provide clear evidence for a partial remedy to the “reliability crisis”. Prior work has used hierarchical Bayesian
frameworks to pinpoint the primary limiting factor for individual difference studies: the overwhelming
influence of trial-level noise (Chen et al., 2021; Rouder et al., 2023). While this insight is invaluable, these
studies also demonstrate that hierarchical Bayesian modeling, on its own, does not provide a solution to the
psychometric issues gripping this field. In contrast, our findings demonstrate a partial solution to this issue,
at least in the case of fMRI, is likely provided by MVPA (Kragel et al., 2021). We found that application
of MVPA substantially suppressed trial-level noise relative to individual differences, and this led to more
certain and interpretable estimates — without compromising the high degree of test-retest reliability. Thus,
the use of multivariate rather than univariate contrasts can substantially boost power for detecting individual
differences in task-fMRI responses to psychological manipulations.

A viable research strategy, then, may be to use task-fMRI and psychological manipulations to collect modest
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sample sizes of relatively densely-sampled individuals, and use MVPA in conjunction with hierarchical
modeling to study their individual differences. Notably, such a goal is attainable through the efforts of a
single laboratory. At first impression, these conclusions may seem to contrast with those of a recent study
concluding that thousands to millions of individuals are necessary to detect individual difference relations
between fMRI and behavioral measures (Marek et al., 2022). Yet, our conclusions do not actually conflict
with theirs. First, this conclusion was based primarily on analyses of resting-state and structural MRI, as
opposed to task-based fMRI, which was our focus here. Second, while a small number of task-based fMRI
analyses were reported in Marek et al. (2022), the results of those analyses exclusively pertain to what the
authors referred to as “brain-wide association studies”, a niche category of individual difference questions,
in which all of the covariance between an individual’s fMRI activation contrast from a given task and their
behavioral performance on the same task is considered to be noise, and therefore completely statistically
discarded (see Extended Data Figure 3 of Marek et al., 2022; Spisak et al., 2023). Such a narrow and unusual
definition of individual-difference correlations conflicts with a foundational assumption in psychology: that
measures in different tasks are partially generated from a smaller set of latent psychological dimensions, such
that dependence on common dimensions drives similarity between measures (Spearman, 1904; Bollen, 2002;
DeYoung et al., 2022). As a result, the results from that study have limited to no bearing on the interpretation
of results reported here. In fact, as their results show, when this common variance is not statistically
discarded, individual-level correlations between task-fMRI and behavioral measures reach moderate effect
sizes (rs between 0.3 and 0.6) — even despite the use of summary-statistic correlations, which are known
to be downwardly biased (Chen et al., 2021), and univariate contrasts, which we have shown here to yield
suboptimal precision for individual-level correlations.

Our findings also demonstrate how it is the case that MVPA leads to substantially lower trial-level variability
than univariate contrasts. Because we used a highly interpretable multivariate framework, linear discriminant
analysis, we were able to straightforwardly formulate univariate contrasts as a special case of a multivariate
decoder, in which the decoder weights, which define how to summarize the spatial activity pattern, are
uniform across vertices (Equation 2; Supplemental Method 10). Critically, the only feature that differed
between our multivariate and univariate models was the nature of these weights: both models were applied to
the same input data, and both implemented a linear scalar projection. The fact that trial-level variability was
squashed in our multivariate contrast therefore implies that the MVPA decoder was able to find a dimension
(i.e., weights) along which the signal-to-noise ratio was more favorable than the uniform dimension, to
which univariate contrasts are bound (see Figure 1 D for a cartoon depiction). Analyses of group-level trends
bolster this interpretation, in which we find that the principal component of trial-level noise in many brain
regions is strongly aligned to the uniform dimension, whereas dimensions that encode the task conditions
are considerably less aligned with the uniform dimension (Figure 8). Whether these improvements result
from suppressing noisy vertices (Walther et al., 2016), exploiting noise correlations (Walther et al., 2016;
Bejjanki et al., 2017), or capturing signal heterogeneity (Davis et al., 2014; Roth et al., 2018; Harrison and
Tong, 2009), and the extent to which these features depend on particulars of preprocessing (e.g., smoothing,
confound regression, HRF modeling) remain questions for future research. Such questions would be highly
tractable to address under the framework we have presented here.

In a relevant prior study, univariate and multivariate decoding models were compared through simulations
from a generative hierarchical model (Davis et al., 2014). Interestingly, these simulations included both
trial and individual-level variability, and one conclusion reached was that MVPA may be less sensitive to
individual-level variability than univariate models. This conclusion may initially seem to conflict with ours,
in that we found MVPA models can yield more favorable measures for targeting individual differences.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2024.04.24.591032doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.24.591032
http://creativecommons.org/licenses/by-nc-nd/4.0/


Note, however, that this prior study considered a highly restricted case, in which individuals only varied in
their univariate (uniform) activation to experimental conditions. This assumes that other factors that can
strongly influence multivariate decode-ability — for example, the amount of voxel-level variability induced
by experimental conditions, or the structure of their trial-level variability (e.g., noise correlations) — are
not variable across subjects. In real data, however, it seems unlikely that these factors do not differ across
subjects. Indeed, even though we did not explicitly optimize the MVPA decoders to enhance individual-level
variability (but rather, to enhance condition-level versus trial-level variability within each individual), the
resulting output patterns were nevertheless able to strongly individuate participants within our sample.

While our expectations that hierarchical modeling and MVPA leads to benefits in test-retest reliability were
borne out in general, there were a minority of brain parcels that did not follow such a pattern. In some cases,
there were a group of parcels for which the hierarchically estimated reliability was lower than that estimated
through summary statistics. Examining this unorthodox set more closely, we found that they all had near
zero or even negative summary statistic reliability (Figure 4). This pattern is consistent with the fact that
hierarchical reliability estimates are multiplicatively scaled relative to summary-statistic estimates (Chen
et al., 2021). In other cases, MVPA decreased the precision of test-retest reliability compared to univariate
analysis (Figure 6). We suspect that this pattern reflects a source of noise to which MVPA is susceptible while
univariate analysis is not: changes in the signal or noise topographies across cross-validation splits. Here, for
our multivariate models, we cross-validated over data acquisition sessions, which were not only administered
on different days, but also involved minor differences in experimental manipulations (see Method 2.6).
These factors likely hampered the ability of our decoders to generalize across sessions. As a result, we view
our results as providing a relatively pessimistic example of the benefits of multivariate modeling. Future
experiments specifically tailored to support this type of analysis, we predict, will yield even more reliable
and precise individual difference measures.

Future work would make valuable contributions by exploring several directions that build on these findings.
We have demonstrated a framework that can yield highly reliable task-fMRI measures at the individual
level. It remains to be seen, however, whether this improved reliability actually translates into improved
predictive power for individual differences. Thus, the next clear step will be to use this framework to
predict other cognitive or behavioral measures of interest. Finding that MVPA methods are more predictive
than univariate methods would provide strong validation of this framework for studying cognitively relevant
individual differences.

Another direction worthy of exploration is whether trial-level variability can be usefully decomposed in
the service of studying individual differences. Here, we have considered such variability to be “noise”.
This consideration was reflected in our use of linear discriminant analysis, which explicitly suppresses trial-
level variability, and by our focus on characterizing the reliability of subject-level means (or “locations”),
as opposed to standard deviations (or “scales”), in fMRI measures of interest. These choices may have
obscured cognitively relevant individual differences. For example, trial-level BOLD variability may reflect
the operation of non-stationary control or attention processes that fluctuate over trials. As such, one may wish
to adopt a decoding method that does not suppress such variability (see Kobak et al., 2016 for similar logic).
In addition, the amount of trial-level variability may itself be useful as an individual difference variable, for
example of the capacity for sustained attention (Williams et al., 2019; Saville et al., 2011). It is also tempting
to consider that a fair amount of this trial-level variability may be explainable in terms of as-yet-unmeasured
cognitive processes. Indeed, large cross-trial variability is an intriguing phenomenon that warrants further
explanation.
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Finally, although our results suggest some promise for the use of classical experimental designs to study
individual differences, we do not wish to discourage the exploration of novel experiments or task designs.
Most likely, there will be distinct advantages to “return to the drawing board” of task design. Classical designs
have been optimized for group-level power, which perhaps occurred at the expense of eliciting subject-level
variability (Hedge et al., 2018). As a result, individual variability may be more strongly elicited by more
naturalistic, less constrained, or higher-dimensional designs (e.g., Shallice and Burgess, 1991; Rosenberg and
Finn, 2022; Sonkusare et al., 2019; Nastase et al., 2020), or by bespoke tasks developed in conjunction with
computational cognitive models (Zorowitz and Niv, 2023). But note, however, that neither of these cases
will allow one to escape the need to develop sophisticated, theory-driven modeling and analysis approaches
to make sense of the data. In addition to classical experimental designs, we predict that novel approaches
would also be well served by the framework we have illustrated here, which exploits the complementary
benefits of MVPA and hierarchical Bayesian modeling.
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5 Data and Code Availability

The fMRI data used in the current study comes from the Dual Mechanisms of Cognitive Control Project
Braver et al. (2021) and will be made available upon publication. Scripts for primary analyses will be made
available at https://github.com/mcfreund/trr. For detailed descriptions of the task design, see Braver
et al. (2021), and of image pre-processing and quality control, see Etzel et al. (2022).
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factor index levels
trial 𝑡 1, ..., 𝑇𝑐,𝑝,𝑠
condition 𝑐 incon, congr
(spatial) model 𝑚 univ, multiv
participant 𝑝 1, ..., 𝑃
(brain) region 𝑛 1, ..., 𝑁 = 400
repetition 𝑟 test, retest
session 𝑠 baseline, proactive, reactive
vertex 𝑣 1, ..., 𝑉𝑛

Table 2: Experimental factors and indices.

10 Supplemental Method

Compared to the main text, this Supplement contains a more comprehensive and unified description of the
spatial brain activity and reliability models we used.

10.1 Mathematical Notation

The transpose operation is written ⊺. Non-bold font is used for scalars while lowercase bold is used for
column vectors and uppercase bold for matrices. Italicized subscripts are used to index sets of scalars,
vectors, or matrices: for example, X𝑖, 𝑗 for 𝑖 ∈ 1, ..., 𝐼 and 𝑗 ∈ 1, ..., 𝐽 refers to the i,j-th matrix in a set of 𝐼𝐽
matrices. Importantly, this subscript notation should not be confused with indices for elements of individual
vectors or matrices. To avoid such confusion, we write element-wise indices with parenthetical superscripts:
for example, 𝑋 (12)

𝑖, 𝑗
refers to the element in the first row and second column of matrix X𝑖, 𝑗 . For clarity within

inline text, all index notation will be omitted.

The specific notation used for factor indices are listed in Table 10.1.

10.2 Spatial brain activity models

The selective averaging procedure described within Section 2.4 furnishes a set of activation estimates per trial
𝑡 ∈ 𝑇 and vertex 𝑣 ∈ 𝑉𝑛, arranged within a data matrix X of size 𝑇 × 𝑉𝑛 . These estimates were segmented
into Schaefer-atlas regions 𝑛 ∈ 𝑁 = 400, centered (see Section 10.2.1), then submitted to univariate or
multivariate spatial models 𝑚 ∈ {univ,multiv}.

Thus, both univariate and multivariate spatial models can be written as a scalar projection of each trials’
pattern:

y𝑝,𝑠,𝑟 ,𝑛,𝑐,𝑚 = X𝑝,𝑠,𝑟 ,𝑛,𝑐w𝑝,𝑠,𝑟 ,𝑛,𝑚 (4)

where y is a vector of length 𝑇 that holds the projections for each trial.

Following this notation, the univariate weights are those that estimate the spatial mean:

w𝑛,𝑚=univ = 1/𝑉𝑛 (5)

where 1 is a vector of length𝑉𝑛 whose entries are all ones. Likewise, the multivariate weights were provided
by the linear discriminant function:

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2024.04.24.591032doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.24.591032
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝑎𝑝,𝑠,𝑟 ,𝑛w𝑝,𝑠,𝑟 ,𝑛,𝑚=multiv = S−1
𝑝,¬𝑠,𝑟 ,𝑛 (x̄𝑝,¬𝑠,𝑟 ,𝑛,𝑐=incon − x̄𝑝,¬𝑠,𝑟 ,𝑛,𝑐=congr) (6)

where x̄ is the mean vector of activation estimates, averaged over trials and of length 𝑉𝑛; S is the mean
within-condition covariance matrix, averaged over conditions and of size 𝑉𝑛 × 𝑉𝑛; and 𝑎 is the Euclidean
norm of the expression on the right-hand side, so that w is unit length. The multivariate models were fitted
in leave-one-session out cross-validation, in which the weights for a given session 𝑠 were estimated using
concatenated data from the other two sessions, ¬𝑠. To provide a moderate amount of robustness to the
model, we regularized S by shrinking the off-diagonal values towards zero by a fixed amount of 25% (cf.
Diedrichsen et al., 2016).

10.2.1 Centering

Prior to fitting the spatial models, the trial-level activation estimates from the timeseries model were centered.
In particular, the values in each vertex were centered at their mean of condition means within each run. This
centering is also known as “mean pattern” or “cocktail” centering (Misaki et al., 2010; Walther et al., 2016).
The goal of implementing this centering was to reduce nuisance variance that resulted from global changes
across different scanning runs and sessions (i.e., “global”, in the sense of changes that impact all conditions
equally within each run). While this form of centering has been criticized for rendering linear correlations
difficult to interpret (eGarrido et al., 2013), this concern does not apply in the present case with an LDA-based
decoder (which implements a centering operation by default; see Misaki et al., 2010; Walther et al., 2016).
To avoid imposing systematic differences between runs via centering, we estimated the mean using only the
specific subset of trials that were present in each scanning run with matched stimulus features across runs and
with balanced proportions of congruent and incongruent conditions within each run (see King et al., 2019
for a similar approach). Finally, we implemented these steps prior to fitting both multivariate and univariate
spatial models, to ensure that the resulting model outputs y, differ only due to differing weights w, and not
differing input data X.

10.2.2 Stratified random undersampling

To minimize bias in decoding results caused by class imbalance and other confounding factors, we used
a stratified random undersampling algorithm to generate the training set for LDA. By randomly sampling
subsets of trials within our training set without replacement, we built a collection of 100 smaller training sets
that contained an approximately equal number of trials 𝑘 of each word and color within both congruent and
incongruent conditions of each scanning run. We selected 𝑘 as the minimum number of occurrences in any
given combination of these factors within a given scanning run. Due to slight differences in trial balancing,
the exact number 𝑘 differed across across runs and sessions: 𝑘 ∈ {4, 5} in the baseline session, 𝑘 ∈ {1, 2}
in the proactive session, and 𝑘 = 6 in the reactive session. Note that these differences should not lead to
systematic biases in the results, as we pool over both runs of two sessions when training decoders, so that
the imbalance is systematically washed out.

10.3 Reliability models

The output of the spatial models, y, forms the “outcome” variable within reliability models. Recall that we
fit identical reliability models to outputs of both spatial model types and to each brain region, and that we
also focused exclusively on modeling reliability within baseline-session projections (Section 2.6). Therefore,
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for clarity in the remaining notation, we omit indices for for model 𝑚, brain region 𝑛, and session 𝑠. For
example, we now denote the output of spatial models as 𝑦𝑐,𝑟 , 𝑝,𝑡 .

10.3.1 Summary-statistic method

First, we averaged the trial-level activation estimates over trials, forming two summary scores per subject and
repetition: �̄�𝑐,𝑟 , 𝑝 = 1

𝑇𝑐,𝑝

∑𝑇𝑐,𝑝

𝑡=1 𝑦 (𝑐,𝑟 , 𝑝,𝑡 ) . Thus, we refer to this method as the “summary statistic” method.
The contrast of interest is the Stroop effect, that is, the difference between means of incongruent versus
congruent trials: �̂�𝑟 , 𝑝 = �̄�𝑐=incon,𝑟 , 𝑝 − �̄�𝑐=congr,𝑟 , 𝑝.

Then, at the population level, Stroop effects can be modeled by a set of Gaussian distributions:

�̂�𝑟 , 𝑝 ∼ N(𝑏𝑟 + 𝛽𝑝, 𝜎
2)

𝛽𝑝 ∼ N(0, 𝜉2)
(7)

where 𝑏𝑟 is the “fixed” (population-level) Stroop effect associated with repetition 𝑟 , and 𝛽𝑝 is the “random”
(individual) Stroop effect associated with participant 𝑝, in general across sessions. Under this formulation
7, the intra-class correlation coefficient is defined as the proportion of variance:

ICC(3, 1) = 𝜉2

𝜉2 + 𝜎2 . (8)

Alternatively, it can be shown that ICC(3, 1) is the same as the Pearson correlation coefficient between the
Stroop effects of both repetitions over the participants 𝑝:

ICC(3, 1) = 𝜉2

𝜉2 + 𝜎2 =
Cov(𝑦𝑟=test, 𝑝, 𝑦𝑟=retest, 𝑝)√︁

Var(𝑦𝑟=test, 𝑝)Var(𝑦𝑟=retest, 𝑝)
= Corr(𝑦𝑟=test, 𝑝, 𝑦𝑟=retest, 𝑝). (9)

10.3.2 Hierarchical Bayesian modeling method

The full or “maximal” model structure is denoted in Equation 10. The rest of this section explains this
formulation in detail.

𝑦𝑐,𝑟 , 𝑝,𝑡 ∼ T (𝛼𝑐,𝑟 , 𝑝, 𝜈𝑐,𝑟 , 𝑝)
𝛼𝑐,𝑟 , 𝑝 = 𝑚𝑐,𝑟 + 𝜇𝑐,𝑟 , 𝑝

log 𝜈𝑐,𝑟 , 𝑝 = 𝛾𝑐,𝑟 + 𝜏𝑐,𝑟 , 𝑝

(𝝁, 𝝉)𝑝 ∼ N(0,𝚺)

𝚺 =


Σ (11) . . . Σ (18)

...
. . .

...

Σ (81) . . . Σ (88)


(10)

We begin by assuming the observed output of the spatial models, 𝑦 (cf, y in Equation 1), is generated from
a set of Student’s t-distributions, each of which are fully described by a location parameter 𝛼 and scale
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parameter 𝜈. Conceptually, these location and scale parameters of the t-distribution are analogous to the
mean and standard deviation parameters of the Gaussian distribution. The t-distribution is used here instead
of Gaussian, however, as its fatter tails provide greater robustness to outlying values (e.g., Chen et al., 2021).
Importantly, the subscripts on 𝛼 and 𝜈 indicate that individual parameters are estimated for each participant
𝑝, condition 𝑐 ∈ {incon, congr}, and repetition 𝑟 ∈ {test, retest} combination.

Note that the the condition and repetition factors are parameterized with a “flat” coding scheme (also
sometimes referred to as a “no-intercept” dummy coding scheme). Under this scheme, a given participant’s
𝛼 parameter coefficients specify their mean projections for each condition and repetition combination (e.g.,
incon within the test repetition).

Next, we assume that these location parameters 𝛼𝑐,𝑟 , 𝑝 are a sum of two components: 𝑚𝑐,𝑟 , a population-level
fixed effect, which all participants share; and 𝜇𝑐,𝑟 , 𝑝, a participant-level random effect, which indicates the
deviation of the 𝑝-th participant’s score from the group score 𝑚𝑐,𝑟 , within repetition 𝑟 and condition 𝑐.

Similar to the location parameter, we decompose the (log of the) scale parameter into population and
participant-level effects. We denote these effects with 𝛾𝑐,𝑟 and 𝜏𝑐,𝑟 , 𝑝, which are analogous to their location-
parameter counterparts. In effect, these parameters enable the model to account for differing amounts of
residual variability for each participant, repetition, and condition combination.

Finally, we assume that each participant’s eight location and scale parameters, now written as a single
8-element vector (𝝁, 𝝉), were sampled from a single multivariate Gaussian distribution with zero mean and
covariance matrix 𝚺. The covariance matrix 𝚺 describes the linear relationships among these parameters
over subjects.

Contained within 𝚺 is the pivotal quantity of test-retest reliability: the correlation between test and retest
repetitions in the Stroop contrast, denoted here as 𝜌. Due to the flat parameterization of the condition and
repetition factors, however, 𝜌 is not explicitly expressed as a single term in 𝚺, but instead implicitly, as a linear
combination of its rows and columns. To obtain 𝜌, we transform 𝚺 by a 2-by-8 contrast matrix W that encodes
this linear combination. Specifically, row 𝑟 of W corresponds to the test or retest repetition, while column
𝑗 corresponds to the 𝑗-th element of the participant-level random effect vector (𝝁, 𝝉). Where 𝑗 corresponds
to 𝜇 (𝑐=incon,𝑟 ) , 𝑊 (𝑟 𝑗 ) = 1; where 𝑗 corresponds to 𝜇 (𝑐=congr,𝑟 ) , 𝑊 (𝑟 𝑗 ) = −1; elsewhere, 𝑊 (𝑟 𝑗 ) = 0. Applying
this contrast to the random-effect covariance matrix, W𝚺W⊺, and dividing the resulting covariance element
by the product of the standard deviations, yields the test-retest correlation in the Stroop effect, 𝜌.

10.4 Alternative Hierarchical Bayesian Models

10.4.1 Reduced model 1: independent location and scale (ILS)

The first simplification to the “full model” that we considered was omitting the random-effect covariances
between the location 𝝁 and scale 𝝉 parameters. This simplification led to a model with the same general form
as in Equation 10, except location 𝝁 and scale 𝝉 parameters were assumed to be generated by independent
distributions, with independent covariance matrices 𝚺𝑙, for 𝑙 ∈ {locat, scale}.

From Equation 10, the reduced terms are as follows:
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𝝁𝑝 ∼ N(0,𝚺𝑙=locat)
𝝉𝑝 ∼ N(0,𝚺𝑙=scale)

𝚺𝑙 =


Σ (11) . . . Σ (14)

...
. . .

...

Σ (41) . . . Σ (44)

 𝑙
(11)

10.4.2 Reduced model 2: independent location and scale, symmetric covariance structure (ILS Sym)

We further simplified the model with independent location and scale (Equation 11) by additionally assuming
that the covariance structure was symmetric between repetitions (Chen et al., 2021). Under a symmetry
assumption, the covariance between different conditions within different repetitions is constrained to be equal
across permutations of repetitions. For example, a symmetric structure would entail that Cov(incon test,
congr retest) equals Cov(congr test, incon retest). To parameterize this covariance structure, we use a different
coding scheme to parameterize the condition factor than used in Equation 10. Now, we use a contrast coding
scheme, 𝑐′ ∈ {mean, stroop}, such that, for a given participant 𝑝 and repetition 𝑟 , 𝛼𝑐′=mean,𝑟 , 𝑝 represents
the mean of incongruent and congruent condition means, and 𝛼𝑐′=stroop,𝑟 , 𝑝 represents the difference between
incongruent and congruent means (i.e., the mean Stroop contrast). Under the symmetry assumption, the
mean of incongruent and congruent conditions is independent from the mean Stroop contrast over subjects
(Chen et al., 2021).

From Equation 10, the reduced terms are as follows:

𝝁𝑝,𝑐′ ∼ N(0,𝚺𝑙=locat,𝑐′)
𝝉𝑝,𝑐′ ∼ N(0,𝚺𝑙=scale,𝑐′)

𝚺𝑙,𝑐′ =

[
Σ (11) Σ (12)

Σ (21) Σ (22)

]
𝑙,𝑐′

(12)

Note that 𝝁 is now a vector with 2 elements, corresponding to each repetition 𝑟 . Under this contrast coding
scheme, it is now no longer necessary to apply a contrast matrix to 𝚺 to obtain the test-retest correlation in
Stroop effects 𝜌.

10.4.3 Reduced model 3: independent location and scale, symmetric covariance structure, homoge-
neous scale (Homog.)

Finally, the simplest model we considered was a reduction of the model with symmetric covariance structure
(Equation 12), in which we additionally assumed that the scale of the residuals, 𝜈, was constant across all
conditions, repetitions, and participants.

From Equation 10, the reduced terms are as follows:
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𝑦𝑐′ ,𝑟 , 𝑝,𝑡 ∼ T (𝛼𝑐,𝑟 , 𝑝, 𝜈)
𝝁𝑝,𝑐′ ∼ N(0,𝚺𝑐′)

𝚺𝑐′ =

[
Σ (11) Σ (12)

Σ (21) Σ (22)

]
𝑐′

(13)

Note that, although this homogeneous-variance assumption is likely unrealistic, it is typically made by
default: for example, it is required by popular hierarchical-modeling libraries such as lme4.

10.5 Analysis of Hierarchical Model Parameters

10.5.1 Population-level Stroop effect

The posterior distribution (MCMC samples) of the ”fixed” (population-level) effect of congruency for each
wave (𝑚𝑐′=stroop,𝑟 in Equation 10 with re-coded contrast 𝑐′) was extracted from the models through the fixef()
function of brms. Samples from this distribution were averaged over repetitions 𝑟 . Then, a 𝑡+ statistic was
computed as the ratio between the mean and standard deviation of the posterior distribution.

10.5.2 Point estimate and precision of test–retest reliability

The posterior distribution of TRR (Σ (12)
𝑙=locat,𝑐′=stroop in Equation 12) was extracted through the VarCorr()

function of brms. The dispersion of the posterior distribution was summarized by the precision, which is the
inverse of the standard deviation.

10.5.3 Variability ratio

To quantify the magnitude of trial-level noise, we computed a ratio: the variability of the Stroop effect
within-individuals relative to the variability between individuals. The particular calculation is as follows: for
every MCMC sample, the trial-level variability 𝜈 is given by the population-level mean of the scale parameter
averaged over repetitions (𝜈 = exp 𝛾(𝑐′=mean,𝑟=test)+𝛾𝑐′=mean,𝑟=retest

2 in Equation 10), while the individual-level vari-

ability𝜎 is given by the “random” effect of Stroop averaged over repetitions (𝜎 =

√︃
Σ
(11)
𝑙=locat,𝑐′=stroop+

√︃
Σ
(22)
𝑙=locat,𝑐′=stroop

2
in Equation 12). The variability ratio 𝜈

𝜎
was computed for each sample and then summarized by the mode

of the distribution.
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11 Supplemental Results

11.1 Model Comparisons
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Figure 9: Results of a model comparison. This model comparison was conducted on 32 brain parcels
(see Method). Expected-log pointwise predictable density (ELPD) was measured in a leave-one-out manner
(LOO). Left, Lines connect ELPD LOO estimates (y axis) across different models (x axis) from the same
parcel. More positive values indicate a better fit, in terms of better estimated ability of the model to account
for out-of-sample datapoints. The pattern of ELPD LOO is highly consistent across parcels. Note that
because statistics from the Homog. model were considerably lower (worse) than others, the y-axis spacing is
non-linear (inverse hyperbolic sine function). Right, Within-parcel contrasts of ELPD LOO. Each point is
a parcel. X and y axes illustrate the difference between ELPD LOO for the respective models. Dashed lines
illustrate unity line and x and y intercepts. The pattern of ELPD LOO is highly consistent across parcels. On
the x-axis, most parcels lie above 0, indicating ILS Sym was preferred over the Full model. On the y-axis,
most parcels lie above 0, indicating ILS was preferred over the Full model. Additionally, all parcels lie to
the left (underneath) the unity line, indicating ILS Sym was preferred over ILS.
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Figure 10: Estimates of population-level Stroop contrasts for all reliability models fitted in 32 brain
parcels used for model comparison. Top, Bar heights illustrate the mean of the posterior, with errorbars
illustrating 95% CI. Bottom, Bar heights illustrate the standard error in the mean, measured as the SD of the
posterior distribution.
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Figure 11: Posterior densities for individual-level test–retest correlations for all reliability models
fitted in 32 brain parcels used for model comparison.
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Figure 12: Posterior densities for trial/subject variability ratios for all reliability models fitted in 32
brain parcels used for model comparison.
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Figure 13: Statistics of posteriors for all reliability models fitted in 32 brain parcels used for model
comparison.
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